
COMPSCI 330: Design and Analysis of Algorithms 9/23/2014

Lecture #9
Lecturer: Debmalya Panigrahi Scribe: Samuel Haney

1 Overview

In this lecture we introduce dynamic programming. Dynamic programming is method to quickly solve large
problems by first solving intermediate problems, then using these intermediate problems to solve the large
problem. Note that we have already seen algorithms like this (e.g. Dijkstra’s algorithm).

2 Shortest Path in a DAG

We begin with trying to find the shortest path in a directed acyclic graph (DAG). Recall that a DAG has
directed edges and contains no cycles. Recall the definition of a topological sort:

Definition 1. Let G = (V,E) be a graph. Let v1, . . . ,vn be an ordering of the vertices in V . v1, . . . ,vn are in
topologically sorted order if for all edges (vi,v j) ∈ E, i < j.

If G is a DAG, then it is always possible to find a topological sorting of the vertices. This ordering is not
necessarily distinct. Consider some shortest path on the DAG:

vi vk vj

Note that the shortest path to v j is the shortest path to vk, plus the edge (vk,v j). This is a property we have
used before. Additionally, we know that k < j since we have assumed that the vertices are in topologically
sorted order. How does this help us? We have the following:

SP(vi,v j) = min
vk∈V

{
SP(vi,vk)+ `(vk,v j)

}
, (1)

where `(vk,v j) is the length of the edge (vk,v j). Can we use Equation 1 to write a recursion? This is not
clear. A recursion must make progress, and this one does not. Therefore, this recursion will not necessarily
terminate. Fortunately, an additional property of the topological sort fixes this problem:

SP(vi,v j) = min
vk∈V
k< j

{
SP(s,vk)+ `(vk,v j)

}
. (2)

Now our recursion is well-defined. Is a recursive algorithm based on this recursion efficient? For each
vertex v j that we visit, we will potentially need to make a recursive call for each vk where k < j (this is the
case if every vertex preceding v j has an edge to v j). Therefore, our recurrence relation is

T (n) = ∑
i<n

T (i)+O(n)

≈ O(nn).
(3)

#9-1

This is extremely slow! To fix this, we will solve the subproblems bottom-up instead of top-down. This
will prevent us from needlessly solving the same subproblems multiple times, which is causing the slow
runtime. We want to fill in the following table. Initially, v1 is zero, and the rest of the values in the table are
∞.

v1 v2 v3 vn

0 ∞ ∞ ∞ ∞ ∞

We have everything that we need to fill in v2. If we suppose there is an edge (v1,v2) of length β , we get

v1 v2 v3 vn

0 β ∞ ∞ ∞ ∞

Now, we have everything we need to fill in the value of v3! In general, when solving for v j, we consider
all vertices vi such that there is an edge (vi,v j). The value of vi plus `(vi,v j) is a potential value for v j. To
find the best value, we take the minimum of this expression over all such vertices vi (this precisely what is
asserted by Equation 2). This process is described formally in Algorithm 1.

Algorithm 1 Shortest Path in a DAG
1: function SP(V,E,s)
2: {v1, · · · ,vn} ← TOPSORT(V)

Assume: vi = s
3: d[vi]← 0
4: for v j 6= vi do
5: d[v j]← ∞

6: for j← 1 to n do
7: for k < j do
8: if d[j]> d[k]+ `(vk,v j) then
9: d[j]← d[k]+ `(vk,v j)

The result of this algorithm will be an array of values where each value is the shortest path in the DAG
from s to the vertex corresponding to that index in the array. To calculate the value in location i, this
algorithm takes O(i) time. Summed over all locations in the array, the running time is O(n2).

In general, we solve dynamic programs in the following two steps:

1. Come up with a table.

2. Move in the table so that we solve a problem whose required subproblems have all been solved already.

3 Largest Increasing Subsequence

In this section, we give another application of dynamic programming.

#9-2

Definition 2. A subsequence of sequence x1, . . . ,xn is some sequence xφ(1), . . . ,xφ(h) such that for all k,
1≤ k ≤ h, we have 1≤ φ(k)≤ n; and for any x j in the subsequence, all xi preceding x j in the subsequence
satisfy i < j. An increasing subsequence is a subsequence such that for any x j in the subsequence, all
xi preceding x j in the subsequence satisfy xi < x j. A largest increasing subsequence is a subsequence of
maximum length.

Note that the largest increasing subsequence need not be unique. For example, consider the following
subsequence.

11 14 13 7 8 15 (4)

The following is a subsequence.
14 8 15

A largest increasing subsequence of the sequence given in 4 is

11 13 15

In this case, there are also two other largest increasing subsequences:

7 8 15

11 14 15

The problem we solve is to find a largest increasing subsequence. What kind of subproblem will help
with this? Let the input sequence be denoted v1, . . . ,vn. We have the following two options:

Option 1 vn is in the subsequence.

Option 2 vn is not in the subsequence.

Option 2 is easy, we just need to solve the same problem on a smaller sequence, so we can recurse. However,
to solve Option 1, we need to recurse on a slightly stronger problem: we would like LIS(k) to be the longest
increasing subsequence that ends at vk. Formally, we have the following expression:

LIS(k) = max
j<k

v j<vk

{LIS (j)}+1 (5)

To finally solve our original problem, we find

LIS = max
k
{LIS(k)} .

Again, implementing this naively using recursion is slow. Instead, we want to use dynamic program-
ming. That is, we want to start with k = 1 and then increase k, instead of starting with k = n and recursing.
We define this formally in Algorithm 2.

#9-3

Algorithm 2 Largest Increasing Subsequence
1: function LIS(v1, . . . ,vn)
2: lis [1]← 1
3: for k← 2 to n do
4: lis [k]← 0
5: if lis [j]+1 > lis [k] then
6: lis [k]← lis [j]+1
7: lis← 0
8: for i← 1 to n do
9: if lis [k]> lis then

10: lis← lis [k]
11: return lis

The runtime of Algorithm 2 is O(n2) by same argument as we used for Algorithm 1.

4 Knapsack Problem (with integer weights)

We now move to a more difficult problem: knapsack with integer weights. An instance of the knapsack
problem is a set of n items, denoted I. Each item has a value and a weight; the value and weight of the ith
item are denoted vi and wi respectively. We are given some budget W , and the goal is to select some subset
of items, I′ ⊆ I, such that

∑
i∈I′

wi ≤W,

∑
i∈I′

vi is maximized.

Unlike our previous discussion of this problem, we will not allow selecting fractions of an item. Only
whole items may be selected. Again, let’s try to break down the problem:

Option 1 vn ∈ OPT .

Option 2 vn 6∈ OPT .

For Option 2, we again recurse on the smaller problem. For Option 2, we recurse with a new budget of
W −wn. Therefore, our dynamic program needs to solve the knapsack problem for all smaller budgets.

KS(W,n) = max{KS(W,n−1),KS(W −wn,n−1)+ vn} (6)

Unlike our previous examples, this recursion has two parameters, so we will need to fill in a two dimensional
table.

#9-4

0 1 2 W

1

2

3

n

Budget

Items

From the recursion, we know that each entry in the table depends on two values in the row below it.
Therefore, we should fill in the bottom row first, then continue filling in rows bottom to top. Each row can
be filled in any order. Calculating the value of each entry takes constant time. Therefore, the running time
is proportional to the size of the table, O(nW). This running time is polynomial in the value of one of the
inputs, W , and is therefore a pseudo-polynomial time algorithm.

5 Independent Set on Trees

We present one last application of dynamic programming – independent set on trees. On general graphs,
independent set is NP-hard. As we will see later in the class, it is even hard to approximate. However, the
problem becomes much easier when restricted to trees.

Definition 3. Let G = (V,E) be a graph. An independent set is a set of vertices {v1, . . . ,vk} ⊆ V such that
for all i, j, with 1≤ i≤ k and 1≤ j ≤ k, (vi,v j) 6∈ E.

For completeness, we also define trees.

Definition 4. A tree is an acyclic, connected graph.

Let IS(v) be the size of the largest independent set in the subtree rooted at v. Like before, we have two
options.

Option 1 v is in the largest independent set of the subtree rooted at v.

Option 2 v is not in the largest independent set of the subtree rooted at v.

#9-5

Note that v can only appear in the independent set if none of its children are in the independent set.

IS(v) = max

{
1+ ∑

w∈granchildren(v)
IS(w), ∑

w∈children(v)
IS(w)

}
. (7)

Our dynamic program should run from the leaves of the up to the root. The running time will be O(n).
We leave the proof of this running time as an exercise.

#9-6

	Overview
	Shortest Path in a DAG
	Largest Increasing Subsequence
	Knapsack Problem (with integer weights)
	Independent Set on Trees

