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Learning amounts to estimating the parameters θ of a probabilistic model for
variable z from the training data z1, . . . , zI . If the model is a prior or a posterior,
then z is the world state w. If the model is a likelihood, then z is the data feature
x. If the model is a joint distribution, then z is the concatenation of x and w.

An important question in machine learning and more generally in parameter
estimation is whether the parameter θ is viewed as a random variable1 or a deter-
ministic unknown. Is there a “true value” for θ out there and estimation needs to
find it (possibly approximately), or is θ inherently unknowable, and all we can do
is to determine its distribution given the data?

In the first approach, parameter estimation finds what is called a point estimate
θ̂ of θ. The measure of fit is then called Maximum Likelihood (ML) if no prior
knowledge of θ is assumed, or Maximum a Posteriori (MAP) if one assumes to
know a prior p(θ|π) for the parameter. The prior itself is of course instantiated by
a set of parameters (π), which are assumed to be known. The second approach,
in which θ is a random variable, is called the Bayesian approach to parameter
estimation.2

Carefully note the distinction between MAP and the Bayesian approach: In
both approaches, the prior p(θ|π) is known, including all its parameters. However,
the MAP approach finds a point estimate θ̂(z1, . . . , zI , π) given the data. This
point estimate is then simply replaced in the likelihood function p(z|θ) to yield the
predictive distribution p(z|z1, . . . , zI , π) = p(z|θ̂(z1, . . . , zI , π)). The Bayesian
approach uses the data to compute a posterior distribution p(θ|z1, . . . , zI , π) for θ
given the data. Because of this, the parameter θ must be marginalized out to find

1“Variable” here is used generically to denote a scalar, a vector, or a matrix.
2Do not confuse the use of “Bayesian” for parameter estimation with the use of “Bayesian” in

“Bayesian inference.” We use Bayesian inference regardless of whether we estimate the parame-
ters of the posterior with ML, MAP, or the Bayesian approach.
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the predictive distribution:

p(z | z1, . . . , zI , π) =

∫
p(z|θ) p(θ|z1, . . . , zI , π) dθ . (1)

Conjugacy
The integral in equation (1) can be difficult to compute either analytically or, when
the dimensionality of θ is large, numerically. Because of this difficulty, the forms
of data distribution p(z|θ) and parameter prior p(θ|π) are carefully designed so
that the integral becomes easy to compute. Specifically, suppose that these distri-
butions can be chosen so that

p(z|θ) p(θ|π) = c(z, π) p(θ|π′) .

In words, the product of data distribution and parameter prior (the left-hand side)
is proportional to a distribution p(θ|π′) that has the same analytic form as the pa-
rameter prior p(θ|π), although possibly with different parameters (π′ 6= π). Cru-
cially, the constant of proportionality c(z, π) is independent of θ. In that case, the
parameter prior p(θ|π) is said to be the conjugate to the data distribution p(z|θ).

The reason why conjugacy is useful is that it makes the integral disappear:∫
p(z|θ) p(θ|π) dθ =

∫
c(z, π) p(θ|π′) dθ (2)

= c(z, π)

∫
p(θ|π′) dθ (3)

= c(z, π) . (4)

Look at these equalities carefully:

(2) Conjugacy replaces the product of two functions of θ with the product of a
probability distribution on θ and one that does not depend on this variable.

(3) The function c(z, π) can be taken out of the integral because it does not depend
on θ.

(4) The integral of what is left is one, because p(θ|π′) is a distribution.

Clearly, this magic requires very special forms for the distributions involved.
This note explores conjugacy for discrete distributions on z, with a continuous
vector θ = λ of parameters.
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Figure 1:. The 1-simplex (left) and the 2-simplex (right).

The Categorical Distribution
When θ is defined on a finite universe with no further constraints, its distribution
is a categorical distribution. This is always the case, as the categorical is the most
general distribution on finite universes, although it may be possible to parameter-
ize this distribution more succinctly (for example, with a binomial or other finite
distribution). If Z is a discrete random variable over K values, the categorical
distribution is

p(z) = λz = P[Z = z] for z = 1, . . . , K .

Since p(z) is a distribution, we have

λk ≥ 0 for l = 1, . . . , K and
K∑
k=1

λk = 1 ,

This is a distribution with k parameters, which can be collected into a vector
parameter λ =

[
λ1, . . . , λK

]T . The constraints on λ define what is called the
unit (K−1)-simplex. Figure 1 shows the 1-simplex and the 2-simplex.
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The Dirichlet Distribution
One possible probability measure on the unit (K−1)-simplex is the Dirichlet dis-
tribution with parameter α, a vector with K strictly positive entries:

p(λ|α) = c(α)
K∏
k=1

λαk−1
k with αk > 0 for k = 1, . . . , K ,

where

c(α) =
Γ
(∑K

k=1 αk

)
∏K

k=1 Γ(αk)
. (5)

In this expression, Γ(t) is the so-called gamma function:

Γ(t) =

∫ ∞
0

xt−1e−x dx . (6)

When t is an integer n, integration by parts shows that this formula simplifies
to a factorial, Γ(n) = (n − 1)!. However, the entries of α need not be integers.
The property

Γ(n+ 1) = nΓ(n)

for integer arguments follows immediately from the definition of factorial. This
property also holds for real-valued t, as we now show.

From the definition (6) of the gamma function we obtain

Γ(t+ 1) =

∫ ∞
0

xte−x dx

and integration by parts yields

Γ(t+ 1) =

∫ ∞
0

xte−x dx = −xte−x
∣∣∞
x=0

+

∫
txt−1e−x dx = t

∫
xt−1e−x dx

that is,
Γ(t+ 1) = tΓ(t) . (7)
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Categorical, Dirichlet, and Conjugacy
We now show that

• The Dirichlet distribution is the conjugate prior of the categorical distribu-
tion

• Bayes training of the Dirichlet parameter is greatly simplified by conjugacy:
The posterior of λ given the training data is still Dirichlet.

• The Bayes predictive distribution for the categorical distribution given a
Dirichlet parameter and the training data is a categorical distribution whose
parameter vector λ′ can be easily computed thanks to conjugacy.

Dirichlet is Conjugate to Categorical
Let

p(z|λ) = λz

be a categorical distribution over K values with parameter

λ = [λ1, . . . , λK ]T

on the unit simplex:

λk ≥ 0 for k = 1, . . . , K and λ1 + . . .+ λK = 1 ,

and let λ have prior Dirichlet distribution with hyper-parameter α. So λ and α
play the roles of θ and π in the previous sections. Conjugacy is immediate:

Catz[λ] Dirλ[α] = p(z|λ)p(λ|α)

= λzc(α)
K∏
k=1

λαk−1
k = c(α)

K∏
k=1

λα̃k−1
k

=
c(α)

c(α̃)
c(α̃)

K∏
k=1

λα̃k−1
k =

c(α)

c(α̃)
Dirλ[α̃]

where
α̃ = [α̃1, . . . , α̃K ] with α̃k = αk + δkz .

In this expression, δkz is the Kronecker delta:

δkz =

{
1 for k = z
0 otherwise .
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The Posterior of λ is Dirichlet
The posterior distribution on λ after seeing training samples z1, . . . , zI is

p(λ|z1, . . . , zI ,α) =
p(λ|α)

∏I
i=1 p(zi|λ)

p(z1, . . . , zI ,α)
.

and applying conjugacy I times yields

p(λ|α)
I∏
i=1

p(zi|λ) = Dirλ[α]
I∏
i=1

λzi

= Dirλ[α]
K∏
k=1

λ
∑I

i=1 δkzi
k

=
c(α)

c(α′)
Dirλ[α′]

where

α′ = [α′1, . . . , α
′
K ]T with α′k = αk +

I∑
i=1

δkzi = αk + h(k | z1, . . . , zI) . (8)

In this expression,

h(k | z1, . . . , zI) =
I∑
i=1

δkzi for k = 1, . . . , K (9)

is the histogram of the data, that is, the count of data points zi that are equal to k.
The evidence, that is, the denominator in the posterior distribution on λ is then

p(z1, . . . , zI ,α) =

∫
p(λ|α)

I∏
i=1

p(zi|λ) dλ

=

∫
c(α)

c(α′)
Dirλ[α′] dλ

=
c(α)

c(α′)

∫
Dirλ[α′] dλ

=
c(α)

c(α′)
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thanks to conjugacy again, so that the posterior on λ is simply

p(λ|z1, . . . , zI ,α) = Dirλ[α′]

(of course, the constant c(α)/c(α′) had to cancel out, because p(λ|z1, . . . , zI ,α)
is a probability distribution, so the last manipulation is merely a confirmation).

The Predictive Distribution
The Bayesian predictive distribution of z is

p(z|z1, . . . , zI ,α) =

∫
p(z|λ)p(λ|z1, . . . , zI ,α) dλ

=

∫
Catz[λ] Dirλ[α′] dλ

=

∫
λz Dirλ[α′] dλ

=

∫
c(α′)

K∏
k=1

λ
α′
k+δkz

k dλ

=
c(α′)

c(α′′)

∫
Dirλ[α′′] dλ

=
c(α′)

c(α′′)
,

where conjugacy came to the rescue once again, and where

α′′ = [α′′1, . . . , α
′′
K ]T with α′′k = α′k+δkz = αk+δkz+h(k | z1, . . . , zI) . (10)

Since z is a discrete variable over K values, its distribution is categorical. So if

λ′ = [λ′1, . . . , λ
′
K ]T

is its parameter, then

p(z|z1, . . . , zI ,α) = λ′z =
c(α′)

c(α′′)
.

We now rewrite the last fraction to determine the values in λ′ and to verify that
they satisfy the unit-simplex constraints

λ′z ≥ 0 for z = 1, . . . , K and λ′1 + . . .+ λ′K = 1 .
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From the definition (10) of α′′ we see that

α′′z = 1 + α′z and α′′k = α′k for k 6= z (11)

and therefore
K∑
k=1

α′′k = 1 +
K∑
k=1

α′k

so that equation (7) with t =
∑K

k=1 α
′
k yields

Γ

(
K∑
k=1

α′′k

)
=

(
K∑
k=1

α′k

)
Γ

(
K∑
k=1

α′k

)
.

Therefore,

λ′z =
c(α′)

c(α′′)
=

Γ
(∑K

k=1 α
′
k

)
∏K

k=1 Γ(α′k)

∏K
k=1 Γ(α′′k)

Γ
(∑K

k=1 α
′′
k

)
=

∏K
k=1 Γ(α′′k)∏K
k=1 Γ(α′k)

1∑K
k=1 α

′
k

=
α′z∑K
k=1 α

′
k

where the last passage follows from (11).
This expression shows that the values λ′z in λ are properly normalized:

λ′1 + . . .+ λ′K = 1 .

From the definition (8) of α′k we obtain the desired result:
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The Bayesian predictive distribution of a categorical distribution with
Dirichlet prior on its parameter λ and hyper-parameter vector α =
[α1, . . . , αK ] after seeing data z1, . . . , zI with histogram

h(k | z1, . . . , zI) =
I∑
i=1

δkzi for k = 1, . . . , K

is a categorical distribution whose vector λ′ of posterior parameters has
entries defined as follows:

λ′z =
αz + h(z | z1, . . . , zI)∑K

k=1 [αk + h(k | z1, . . . , zI)]
for z = 1, . . . , K .

Since the αks are positive real numbers and the histograms are integer counts,
the entries of λ′ are nonnegative.

The result above is also given (without proof) in equation (4.35) of the text-
book. Comparison with equations (4.30) in the textbook shows that the ML point
estimate

λ̂(ML)
z =

h(z | z1, . . . , zI)∑K
k=1 h(k | z1, . . . , zI)

of λz yields the same predictive distribution for z as the Bayesian estimation ap-
proach with the uninformative prior α = [0, . . . , 0]. Comparison with equation
(4.32) in the textbook shows that the MAP point estimate

λ̂(MAP )
z =

αz + h(z | z1, . . . , zI)− 1∑K
k=1 [αk + h(k | z1, . . . , zI)− 1]

of λz yields a less “diffuse” predictive distribution than the Bayesian estimate,
in the sense that the MAP parameters can be obtained from the Bayes ones by
de-normalizing (that is, multiply then by the sum in their common denominator),
subtracting 1 from each parameter, and re-normalizing. This transformation in-
creases the ratios between larger and smaller values, because

v > u > 1 ⇒ v − 1

u− 1
>
v

u
.

The ratios between larger and smaller values of the categorical parameters are
even greater for the ML estimate, because the αz are replaced by zeros.
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In particular, since the αz are strictly positive, the Bayesian estimate λ′ cannot
have any zero entries, while the MAP estimate can, and even more so can the ML
estimate. In this sense, the ML estimate is more “peaked” than the MAP estimate
and the MAP estimate is more “peaked” than the Bayes estimate.
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