
Lowpass and Bandpass Pyramids

Carlo Tomasi

It is often useful to analyze an image I(x) at different scales. One can then form a stack of images
obtained by repeatedly blurring the input image:

B0 = I

B` = B`−1 ⊗ Sσ for ` = 1, . . . , L (1)

where Sσ(x) is a smoothing kernel, typically a Gaussian with width σ, and the symbol ’⊗’ denotes convo-
lution. The larger σ, the more high-frequency information is suppressed at every level of smoothing, and
analysis of B` reveals finer or coarser structures in the image depending on the value of the level `. Figure
1 shows the result of blurring an input image L = 7 times with a Gaussian kernel with σ = 2 pixels. Note
the loss of detail at higher levels (` > 0) of the stack.

The convolution of a Gaussian with parameter σ1 with another Gaussian with parameter σ2 is a Gaus-
sian with parameter σ =

√
σ21 + σ22 . Because of this, convolving an image ` times with a Gaussian with

parameter σ is the same as convolving the same image once with a Gaussian with parameter

σ` =
√
`σ

for each `. So we can also write

B0 = I

B` = B0 ⊗ Sσ|` for ` = 1, . . . , L .

Of course, the iterative smoothing procedure (1) is more efficient, because the kernels are smaller.
The sampling frequency of the images in the stack is high when compared to the spatial frequencies

contained in the images for ` > 0, so the blurred imagesB` can be sampled after filtering without significant
loss of information. Without getting into the quantitative aspects of sampling and image bandwidth, it turns
out that most of the image information is preserved if every time the image is blurred with a Gaussian filter
with parameter σ, the image is subsampled by a factor of about σ/1.6.

When s = σ/1.6 is an integer number, it is clear what this means: filter with a Gaussian with parameter
σ, then retain every s-th pixel in each dimension. When s is not an integer, on the other hand, sampling
“every s pixels” entails retrieving image values between the values available in the image array. This can be
done by sub-pixel interpolation, which requires a model for the continuous image that the array values are
samples of. One of the simplest such models is the bilinear one, in which the underlying continuous image
I(x) is assumed to be separately linear in x and y, the two components of x. This model leads to bilinear
interpolation: Let x = (x, y), and

ξ = bxc , η = byc
∆x = x− ξ , ∆y = y − η .

1



Then,

I(x) = I(ξ, η) (1−∆x) (1−∆y)

+ I(ξ + 1, η) ∆x (1−∆y)

+ I(ξ, η + 1) (1−∆x) ∆y

+ I(ξ + 1, η + 1) ∆x∆y .

We can now sample the image I with any sampling period, integer or otherwise.
We encapsulate the operations of filtering followed by sampling into a single function

B = resize(I, φ)

where the downsampling factor φ is a positive real number that denotes the ratio between the size of B and
that of I . For values 0 < φ < 1, the image shrinks. For φ > 1, no filtering is performed, and the image
grows larger. The filter in downsampling is Gaussian with parameter

σ = 1.6/φ .

Replacing convolution with Sσ with resize(·, φ) where 0 < φ < 1 in equation (1) yields the Gaussian
pyramid:

G0 = I

G` = down(G`−1) for ` = 1, . . . , L . (2)

In the last expression, we think of fixing φ to some value between 0 and 1 (for instance, φ = 1/2) and define

down(X) = resize(X,φ) .

We will later also need
up(X) = resize(X, 1/φ)

where “down” and “up” use the same value of φ. These two operations are called downsampling and
upsampling. There is a crucial difference between the two: Downsampling blurs the input image with a
Gaussian and then samples it by bilinear interpolation to make it smaller. Upsampling merely resamples the
input image on a finer grid, but it does not undo the blurring. SoX and up(X) contain the same frequencies,
but the latter is bigger than the former.

Since the image shrinks at each level, it is no longer necessary to specify the maximum level L: once the
image shrinks to a single pixel (about blog1/φ(min(R,C))c steps, where R and C are the number of rows
and columns of I), the procedure stops.

Figure 2 shows the Gaussian pyramid for the same image input image as in Figure 1 and for φ = 1/2.
The input image has R = 365 rows and C = 384 columns, and the pyramid has L = 7 levels (plus the input
image itself).

The Gaussian pyramid is said to be a lowpass pyramid, in that every level contains all the image fre-
quencies below some value, roughly proportional to φ`. In contrast, the Laplacian pyramid is a bandpass
pyramid, in that every level contains the image frequencies around a value that is roughly proportional to
φ`.

This bandpass behavior could be achieved by replacing the image at level ` with the difference H`

between B`−1 and B` in the Gaussian stack: The first image contains frequencies below Fφ`−1 (where

2



Figure 1: A Gaussian stack.

Figure 2: A Gaussian pyramid.

3



F measures the highest frequencies in the original image I), and the second contains frequencies below
Fφ`, so their difference H` would contain frequencies between Fφ` and Fφ`−1, that is, the image detail
at frequencies in this band. One would then subsample B` and B`+1 by a factor φ and repeat, so that each
detail image H` would be smaller than H(`−1) by a factor of φ. The result is a pyramid of images H` each
of which contains detail around lower and lower frequencies, plus a single, tiny lowpass image BL+1 left
over after the last subsampling.

How exactly does the information in the highpass pyramid relate to that in the input image I? To
reconstruct I from H1, . . . ,HL and BL+1, one would have to upsample BL+1 and add HL to the result to
obtain BL:

BL = HL + up(BL+1) .

This procedure could be continued until I = B0. However, this would require upsampling to be the exact
inverse of the sampling part of downsampling. However, the two sampling operations use bilinear interpo-
lation over two different grids, so this requirement cannot be met precisely.

The solution is the Laplacian pyramid, which contains exactly the same information as the input im-
age, and from which the input image can be reconstructed exactly (up to numerical rounding). Instead of
subtracting two consecutive images from the Gaussian stack, the Laplacian pyramid takes two consecutive
images G` and G`+1 from the Gaussian pyramid, upsamples G`+1, and makes H` the difference between
G` and the upsampled G`+1:

H` = G` − up(G`+1) .

This simple change guarantees that G` can be reconstructed exactly from G`+1 and H`, since the last equa-
tion can be solved for G` to obtain he following:

G` = H` + up(G`+1) .

Here is an algorithm for computing the Laplacian pyramid. First, set

L← I .

Then, while L0 is large enough, repeat the following for ` = 1, 2, . . .:

L0 ← down(L)

H` ← L− up(L0)

L ← L0 .

The remaining image L is the lowpass residual LL+1.
Figure 3 shows the Laplacian pyramid for the same image input image as in Figure 1 and for φ = 1/2.

To reconstruct the image from the Laplacian pyramid, we work backwards:

I ← LL+1

and for ` = L, . . . , 1:
I ← up(I) +H`

A small caveat: because of rounding, up(I) may not yield exactly the desired image size. Because of this,
we overload the definition of the up function to take as second argument the desired size of the output image
instead of the scaling factor, and the last assignment becomes

I ← up(I, size(H`)) +H` .

Figure 4 shows computation of the Laplacian pyramid and reconstruction of the image from it in schematic
form.

4



Figure 3: A Laplacian pyramid. Pixel values are positive and negative, and gray denotes zero.

down

down

down

up

up

up

−

−

−

up

up

up

Figure 4: Construction of the Laplacian pyramid (left) and its inverse (right).

5


