CPS 570: Artificial Intelligence
Bayesian networks

Instructor: Vincent Conitzer
Specifying probability distributions

• Specifying a probability for every atomic event is impractical

• \(P(X_1, \ldots, X_n) \) would need to be specified for every combination \(x_1, \ldots, x_n \) of values for \(X_1, \ldots, X_n \)
 – If there are \(k \) possible values per variable…
 – … we need to specify \(k^n - 1 \) probabilities!

• We have already seen it can be easier to specify probability distributions by using (conditional) independence

• Bayesian networks allow us
 – to specify any distribution,
 – to specify such distributions concisely if there is (conditional) independence, in a natural way
A general approach to specifying probability distributions

• Say the variables are X_1, \ldots, X_n
• $P(X_1, \ldots, X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1,X_2)\ldots P(X_n|X_1, \ldots, X_{n-1})$
• or:
• $P(X_1, \ldots, X_n) = P(X_n)P(X_{n-1}|X_n)P(X_{n-2}|X_n,X_{n-1})\ldots P(X_1|X_n, \ldots, X_2)$
• Can specify every component
 – For every combination of values for the variables on the right of $|$, specify the probability over the values for the variable on the left
• If every variable can take k values,
• $P(X_i|X_1, \ldots, X_{i-1})$ requires $(k-1)k^{i-1}$ values
• $\sum_{i=1}^{n}(k-1)k^{i-1} = \sum_{i=1}^{n}k^i-k^{i-1} = k^n - 1$
• Same as specifying probabilities of all atomic events – of course, because we can specify any distribution!
Graphically representing influences
Conditional independence to the rescue!

- Problem: $P(X_i|X_1, \ldots, X_{i-1})$ requires us to specify too many values.

- Suppose X_1, \ldots, X_{i-1} partition into two subsets, S and T, so that X_i is conditionally independent from T given S.

- $P(X_i|X_1, \ldots, X_{i-1}) = P(X_i|S, T) = P(X_i|S)$

- Requires only $(k-1)k^{|S|}$ values instead of $(k-1)k^{i-1}$ values.
Graphically representing influences

- ... if X_4 is conditionally independent from X_2 given X_1 and X_3
Rain and sprinklers example

sprinklers is independent of raining, so no edge between them

raining (X)

sprinklers (Y)

P($X=1$) = .3

P($Y=1$) = .4

Each node has a conditional probability table (CPT)

P($Z=1$ | $X=0$, $Y=0$) = .1
P($Z=1$ | $X=0$, $Y=1$) = .8
P($Z=1$ | $X=1$, $Y=0$) = .7
P($Z=1$ | $X=1$, $Y=1$) = .9
Rigged casino example

P(CR=1) = 1/2

P(D1=1|CR=0) = 1/6
... P(D1=5|CR=0) = 1/6
P(D1=1|CR=1) = 3/12
... P(D1=5|CR=1) = 1/6

P(D2=1|CR=0) = 1/6
... P(D2=5|CR=0) = 1/6
P(D2=1|CR=1) = 3/12
... P(D2=5|CR=1) = 1/6

die 2 is conditionally independent of die 1 given casino rigged, so no edge between them
Rigged casino example with poorly chosen order

die 1 and die 2 are not independent

both the dice have relevant information for whether the casino is rigged

need 36 probabilities here!
More elaborate rain and sprinklers example

\[P(+r) = 0.2 \]

\[P(+n|+r) = 0.3 \]
\[P(+n|-r) = 0.4 \]

\[P(+s) = 0.6 \]

\[P(+g|+r,+s) = 0.9 \]
\[P(+g|+r,-s) = 0.7 \]
\[P(+g|-r,+s) = 0.8 \]
\[P(+g|-r,-s) = 0.2 \]

\[P(+d|+n,+g) = 0.9 \]
\[P(+d|+n,-g) = 0.4 \]
\[P(+d|-n,+g) = 0.5 \]
\[P(+d|-n,-g) = 0.3 \]
Atomic events

- Can easily calculate the probability of any **atomic** event
- \[P(+r,+s,+n,+g,+d) = P(+r)P(+s)P(+n|+r)P(+g|+r,+s)P(+d|+n,+g) \]
- Can also **sample** atomic events easily
Inference

- **Want to know**: $P(+r|+d) = \frac{P(+r,+d)}{P(+d)}$

- **Let’s compute**: $P(+r,+d)$
\[P(+r, +d) = \sum_s \sum_g \sum_n P(+r)P(s)P(n|r)P(g|r,s)P(+d|n,g) = P(+r)\sum_s P(s)\sum_g P(g|r,s)\sum_n P(n|r)P(+d|n,g) \]
• From the factor $\Sigma_n P(n|r)P(d|n,g)$ we sum out n to obtain a factor only depending on g
• $[\Sigma_n P(n|r)P(d|n,+g)] = P(n|r)P(d|n,+g) + P(-n|r)P(d|-n,+g) = .3*.9+.7*.5 = .62$
• $[\Sigma_n P(n|r)P(d|n,-g)] = P(n|r)P(d|n,-g) + P(-n|r)P(d|-n,-g) = .3*.4+.7*.3 = .33$
• Continuing to the left, g will be summed out next, etc. (continued on board)
Elimination order matters

- \(P(+r) = 0.2 \)
- \(P(+n|+r) = 0.3 \)
- \(P(+n|-r) = 0.4 \)
- \(P(+d|+n,+g) = 0.9 \)
- \(P(+d|+n,-g) = 0.4 \)
- \(P(+d|-n,+g) = 0.5 \)
- \(P(+d|-n,-g) = 0.3 \)

- \(P(+g|+r,+s) = 0.9 \)
- \(P(+g|+r,-s) = 0.7 \)
- \(P(+g|-r,+s) = 0.8 \)
- \(P(+g|-r,-s) = 0.2 \)

- \(P(+s) = 0.6 \)

- Last factor will depend on two variables in this case!

\[
P(+r,+d) = \sum_n \sum_s \sum_g P(+r)P(s)P(n|+r)P(g|+r,s)P(+d|n,g) =
\]
Don’t always need to sum over all variables

- Can drop parts of the network that are irrelevant

 \[
P(+r, +s) = P(+r)P(+s) = .6 \times .2 = .12
 \]
 \[
P(+n, +s) = \Sigma_r P(r, +n, +s) = \Sigma_r P(r)P(+n|r)P(+s) = P(+s)\Sigma_r P(r)P(+n|r) = P(+s)(P(+r)P(+n|+r) + P(-r)P(+n|-r)) = .6 \times (2 \times .3 + 8 \times .4) = .6 \times .38 = .228
 \]
 \[
P(+d | +n, +g, +s) = P(+d | +n, +g) = .9
 \]
Trees are easy

- Choose an extreme variable to eliminate first
- Its probability is “absorbed” by its neighbor
- \(\cdots \sum_{x_4} P(x_4|x_1, x_2) \cdots \sum_{x_5} P(x_5|x_4) = \cdots \sum_{x_4} P(x_4|x_1, x_2)[\sum_{x_5} P(x_5|x_4)] \cdots \)
Clustering algorithms

- Merge nodes into “meganodes” until we have a tree
 - Then, can apply special-purpose algorithm for trees
- Merged node has values \{+n+g,+n-g,-n+g,-n-g\}
 - Much larger CPT
Logic gates in Bayes nets

• Not everything needs to be random...

AND gate

\[
\begin{align*}
P(+y|+x_1,+x_2) &= 1 \\
P(+y|-x_1,+x_2) &= 0 \\
P(+y|+x_1,-x_2) &= 0 \\
P(+y|-x_1,-x_2) &= 0
\end{align*}
\]

OR gate

\[
\begin{align*}
P(+y|+x_1,+x_2) &= 1 \\
P(+y|-x_1,+x_2) &= 1 \\
P(+y|+x_1,-x_2) &= 1 \\
P(+y|-x_1,-x_2) &= 0
\end{align*}
\]
Modeling satisfiability as a Bayes Net

- \((+X_1 \text{ OR } -X_2) \text{ AND } (-X_1 \text{ OR } -X_2 \text{ OR } -X_3)\)

- \(P(+X_1) = \frac{1}{2}\)
- \(P(+X_2) = \frac{1}{2}\)
- \(P(+X_3) = \frac{1}{2}\)

- \(Y = -X_1 \text{ OR } -X_2\)

- \(P(+c_1|+x_1,+x_2) = 1\)
- \(P(+c_1|-x_1,+x_2) = 0\)
- \(P(+c_1|+x_1,-x_2) = 1\)
- \(P(+c_1|-x_1,-x_2) = 1\)

- \(P(+y|+x_1,+x_2) = 0\)
- \(P(+y|-x_1,+x_2) = 1\)
- \(P(+y|+x_1,-x_2) = 1\)
- \(P(+y|-x_1,-x_2) = 1\)

- \(P(+c_2|y,+x_3) = 1\)
- \(P(+c_2|-y,+x_3) = 0\)
- \(P(+c_2|y,-x_3) = 1\)
- \(P(+c_2|-y,-x_3) = 1\)

- \(P(+f|+c_1,+c_2) = 1\)
- \(P(+f|-c_1,+c_2) = 0\)
- \(P(+f|+c_1,-c_2) = 0\)
- \(P(+f|-c_1,-c_2) = 0\)

- \(P(+f) > 0\) iff formula is satisfiable, so inference is NP-hard

- \(P(+f) = (\#\text{satisfying assignments}/2^n)\), so inference is \#P-hard
 (because counting number of satisfying assignments is)
More about conditional independence

- A node is conditionally independent of its non-descendants, given its parents.
- A node is conditionally independent of everything else in the graph, given its parents, children, and children’s parents (its Markov blanket).

Note: can’t know for sure that two nodes are not independent: edges may be dummy edges.
General criterion: d-separation

- Sets of variables X and Y are conditionally independent given variables in Z if all paths between X and Y are blocked; a path is blocked if one of the following holds:
 - it contains $U \rightarrow V \rightarrow W$ or $U \leftarrow V \leftarrow W$ or $U \leftarrow V \rightarrow W$, and V is in Z
 - it contains $U \rightarrow V \leftarrow W$, and neither V nor any of its descendants are in Z

- N is independent of G given R
- N is not independent of S given R and D