CPS 570: Artificial Intelligence

Decision theory

Instructor: Vincent Conitzer
Risk attitudes

• Which would you prefer?
 – A lottery ticket that pays out $10 with probability .5 and $0 otherwise, or
 – A lottery ticket that pays out $3 with probability 1

• How about:
 – A lottery ticket that pays out $100,000,000 with probability .5 and $0 otherwise, or
 – A lottery ticket that pays out $30,000,000 with probability 1

• Usually, people do not simply go by expected value

• An agent is risk-neutral if she only cares about the expected value of the lottery ticket

• An agent is risk-averse if she always prefers the expected value of the lottery ticket to the lottery ticket
 – Most people are like this

• An agent is risk-seeking if she always prefers the lottery ticket to the expected value of the lottery ticket
Decreasing marginal utility

- Typically, at some point, having an extra dollar does not make people much happier (decreasing marginal utility)
Maximizing expected utility

- Lottery 1: get $1500 with probability 1
 - gives expected utility 2
- Lottery 2: get $5000 with probability .4, $200 otherwise
 - gives expected utility .4*3 + .6*1 = 1.8
 - (expected amount of money = .4*$5000 + .6*$200 = $2120 > $1500)
- So: maximizing expected utility is consistent with risk aversion
Different possible risk attitudes under expected utility maximization

- **Green** has decreasing marginal utility \rightarrow risk-averse
- **Blue** has constant marginal utility \rightarrow risk-neutral
- **Red** has increasing marginal utility \rightarrow risk-seeking
- **Grey’s** marginal utility is sometimes increasing, sometimes decreasing \rightarrow neither risk-averse (everywhere) nor risk-seeking (everywhere)
What is utility, anyway?

• Function $u: O \rightarrow \mathbb{R}$ (O is the set of “outcomes” that lotteries randomize over)

• What are its units?
 – It doesn’t really matter
 – If you replace your utility function by $u'(o) = a + bu(o)$, your behavior will be unchanged

• Why would you want to maximize expected utility?
 – This is a question about preferences over lotteries
Compound lotteries

- For two lottery tickets L and L’, let \(pL + (1-p)L' \) be the “compound” lottery ticket where you get lottery ticket L with probability \(p \), and L’ with probability \(1-p \).

\[p = 50\% \quad 1-p = 50\% \]

\[pL+(1-p)L' \]

\[\begin{array}{c}
 50\% \\
 25\% \\
 25\% \\
 75\% \\
 25\% \\
\end{array} \]

\[\begin{array}{c}
 O_1 \\
 O_2 \\
 O_3 \\
 O_2 \\
 O_4 \\
\end{array} \]

\[\begin{array}{c}
 25\% \\
 50\% \\
 12.5\% \\
 12.5\% \\
\end{array} \]

\[\begin{array}{c}
 O_1 \\
 O_2 \\
 O_3 \\
 O_4 \\
\end{array} \]
Sufficient conditions for expected utility

• $L \geq L'$ means that L is (weakly) preferred to L'
 – (\geq should be complete, transitive)

• Expected utility theorem. Suppose
 – (continuity axiom) for all L, L', L'', \{p: pL + (1-p)L' \geq L''\} and \{p: pL + (1-p)L' \leq L''\} are closed sets, and
 – (independence axiom – more controversial) for all L, L', L'', $p > 0$, we have $L \geq L'$ if and only if $pL + (1-p)L'' \geq pL' + (1-p)L''$

Then, there exists a function $u: O \rightarrow \mathbb{R}$ so that $L \geq L'$ if and only if L gives a higher expected value of u than L'
Acting optimally over time

- **Finite** number of periods:
 - Overall utility = sum of rewards in individual periods

- **Infinite** number of periods:
 - … are we just going to add up the rewards over infinitely many periods?
 - Always get infinity!

- (Limit of) average payoff: \(\lim_{n \to \infty} \sum_{1 \leq t \leq n} r(t)/n \)
 - Limit may not exist…

- **Discounted** payoff: \(\sum_t \delta^t r(t) \) for some \(\delta < 1 \)

- Interpretations of discounting:
 - Interest rate \(r \): \(\delta = 1/(1+r) \)
 - World ends with some probability \(1 - \delta \)

- Discounting is mathematically convenient