CPS 570: Artificial Intelligence

First-Order Logic

Instructor: Vincent Conitzer
Limitations of propositional logic

• So far we studied propositional logic
• Some English statements are hard to model in propositional logic:
 • “If your roommate is wet because of rain, your roommate must not be carrying any umbrella”
 • Pathetic attempt at modeling this:
 • RoommateWetBecauseOfRain =>
 (NOT(RoommateCarryingUmbrella0) AND NOT(RoommateCarryingUmbrella1) AND NOT(RoommateCarryingUmbrella2) AND …)
Problems with propositional logic

- No notion of objects
- No notion of relations among objects
- RoommateCarryingUmbrella0 is instructive to us, suggesting
 - there is an object we call Roommate,
 - there is an object we call Umbrella0,
 - there is a relationship Carrying between these two objects
- Formally, none of this meaning is there
 - Might as well have replaced RoommateCarryingUmbrella0 by P
Elements of first-order logic

- **Objects**: can give these names such as Umbrella0, Person0, John, Earth, ...

- **Relations**: Carrying(. .), IsAnUmbrella(.)
 - Carrying(Person0, Umbrella0), IsUmbrella(Umbrella0)
 - Relations with one object = unary relations = properties

- **Functions**: Roommate(.)
 - Roommate(Person0)

- **Equality**: Roommate(Person0) = Person1
Things to note about functions

• It could be that we have a separate name for Roommate(Person0)

• E.g., Roommate(Person0) = Person1

• … but we do not need to have such a name

• A function can be applied to any object

• E.g., Roommate(Umbrella0)
Reasoning about many objects at once

- **Variables:** x, y, z, \ldots can refer to multiple objects
- New operators “for all” and “there exists”
 - Universal quantifier and existential quantifier
- for all x: \(\text{CompletelyWhite}(x) \Rightarrow \neg \text{PartiallyBlack}(x)\)
 - Completely white objects are never partially black
- there exists x: \(\text{PartiallyWhite}(x) \land \text{PartiallyBlack}(x)\)
 - There exists some object in the world that is partially white and partially black
Practice converting English to first-order logic

• “John has an umbrella”

• there exists y: (Has(John, y) AND IsUmbrella(y))

• “Anything that has an umbrella is not wet”

• for all x: ((there exists y: (Has(x, y) AND IsUmbrella(y))) => NOT(IsWet(x)))

• “Any person who has an umbrella is not wet”

• for all x: (IsPerson(x) => ((there exists y: (Has(x, y) AND IsUmbrella(y))) => NOT(IsWet(x))))
More practice converting English to first-order logic

- “John has at least two umbrellas”
- there exists x: (there exists y: (Has(John, x) AND IsUmbrella(x) AND Has(John, y) AND IsUmbrella(y) AND NOT(x=y)))
- “John has at most two umbrellas”
- for all x, y, z: ((Has(John, x) AND IsUmbrella(x) AND Has(John, y) AND IsUmbrella(y) AND Has(John, z) AND IsUmbrella(z)) => (x=y OR x=z OR y=z))
Even more practice converting English to first-order logic…

• “Duke’s basketball team defeats any other basketball team”

 for all x: \((\text{IsBasketballTeam}(x) \text{ AND NOT}(x=\text{BasketballTeamOf(Duke)})) \implies \text{Defeats(\text{BasketballTeamOf(Duke)}, x)})\)

• “Every team defeats some other team”

 for all x: \((\text{IsTeam}(x) \implies (\text{there exists } y: (\text{IsTeam}(y) \text{ AND NOT}(x=y) \text{ AND Defeats}(x,y))))\)
Is this a tautology?

• “Property P implies property Q, or property Q implies property P (or both)”

• for all x: ((P(x) => Q(x)) OR (Q(x) => P(x)))

• (for all x: (P(x) => Q(x)) OR (for all x: (Q(x) => P(x))))
Relationship between universal and existential

• for all x: a
• is equivalent to
• NOT(there exists x: NOT(a))
Something we cannot do in first-order logic

- We are **not** allowed to reason in general about relations and functions
- The following would correspond to higher-order logic (which is more powerful):
 - “If John is Jack’s roommate, then any property of John is also a property of Jack’s roommate”
 - \((\text{John}=\text{Roommate(Jack)}) \Rightarrow \forall p: (p(\text{John}) \Rightarrow p(\text{Roommate(Jack)}))\)
 - “If a property is inherited by children, then for any thing, if that property is true of it, it must also be true for any child of it”
 - \(\forall p: (\text{IsInheritedByChildren}(p) \Rightarrow (\forall x, y: ((\text{IsChildOf}(x,y) \land p(y)) \Rightarrow p(x))))\)
Axioms and theorems

- **Axioms**: basic facts about the domain, our “initial” knowledge base
- **Theorems**: statements that are logically derived from axioms
SUBST

- SUBST replaces one or more variables with something else

- For example:
 - $\text{SUBST(\{x/John\}, \text{IsHealthy(x)} \Rightarrow \text{NOT(HasACold(x))})}$ gives us
 - $\text{IsHealthy(John)} \Rightarrow \text{NOT(HasACold(John))}$
Instantiating quantifiers

• From
• for all x: a
• we can obtain
• SUBST({x/g}, a)

• From
• there exists x: a
• we can obtain
• SUBST({x/k}, a)
• where k is a constant that does not appear elsewhere in the knowledge base (Skolem constant)
• Don’t need original sentence anymore
Instantiating existentials after universals

• for all x: there exists y: IsParentOf(y, x)
• WRONG: for all x: IsParentOf(k, x)
• RIGHT: for all x: IsParentOf(k(x), x)
• Introduces a new function (Skolem function)
• … again, assuming k has not been used previously
Generalized modus ponens

- for all x: Loves(John, x)
 - John loves every thing
- for all y: (Loves(y, Jane) => FeelsAppreciatedBy(Jane, y))
 - Jane feels appreciated by every thing that loves her

- Can infer from this:
- FeelsAppreciatedBy(Jane, John)

- Here, we used the substitution \{x/Jane, y/John\}
 - Note we used different variables for the different sentences
- General UNIFY algorithms for finding a good substitution
Keeping things as general as possible in unification

- Consider EdibleByWith
 - e.g., EdibleByWith(Soup, John, Spoon) – John can eat soup with a spoon
- for all x: for all y: EdibleByWith(Bread, x, y)
 - Anything can eat bread with anything
- for all u: for all v: (EdibleByWith(u, v, Spoon) => CanBeServedInBowlTo(u, v))
 - Anything that is edible with a spoon by something can be served in a bowl to that something

- Substitution: {x/z, y/Spoon, u/Bread, v/z}
- Gives: for all z: CanBeServedInBowlTo(Bread, z)
- Alternative substitution {x/John, y/Spoon, u/Bread, v/John} would only have given CanBeServedInBowlTo(Bread, John), which is not as general
Resolution for first-order logic

- for all x: $(\neg \text{Knows}(\text{John}, x) \lor \text{IsMean}(x) \lor \text{Loves}(\text{John}, x))$
 - John loves everything he knows, with the possible exception of mean things

- for all y: $(\text{Loves}(\text{Jane}, y) \lor \text{Knows}(y, \text{Jane}))$
 - Jane loves everything that does not know her

- What can we unify? What can we conclude?

- Use the substitution: $\{x/\text{Jane}, y/\text{John}\}$

- Get: $\text{IsMean}(\text{Jane}) \lor \text{Loves}(\text{John}, \text{Jane}) \lor \text{Loves}(\text{Jane}, \text{John})$

- Complete (i.e., if not satisfiable, will find a proof of this), if we can remove literals that are duplicates after unification
 - Also need to put everything in canonical form first
Notes on inference in first-order logic

• Deciding whether a sentence is entailed is semidecidable: there are algorithms that will eventually produce a proof of any entailed sentence

• It is not decidable: we cannot always conclude that a sentence is not entailed
(Extremely informal statement of) Gödel’s Incompleteness Theorem

• First-order logic is not rich enough to model basic arithmetic

• For any consistent system of axioms that is rich enough to capture basic arithmetic (in particular, mathematical induction), there exist true sentences that cannot be proved from those axioms
A more challenging exercise

• Suppose:
 – There are exactly 3 objects in the world,
 – If x is the spouse of y, then y is the spouse of x (spouse is a function, i.e., everything has a spouse)

• Prove:
 – Something is its own spouse
More challenging exercise

- there exist x, y, z: \((\neg(x=y) \land \neg(x=z) \land \neg(y=z))\)
- for all w, x, y, z: \((w=x \lor w=y \lor w=z \lor x=y \lor x=z \lor y=z)\)
- for all x, y: \(((\text{Spouse}(x)=y) \Rightarrow (\text{Spouse}(y)=x))\)
- for all x, y: \(((\text{Spouse}(x)=y) \Rightarrow \neg(x=y))\) (for the sake of contradiction)
- Try to do this on the board…
Umbrellas in first-order logic

• You know the following things:
 – You have exactly one other person living in your house, who is wet
 – If a person is wet, it is because of the rain, the sprinklers, or both
 – If a person is wet because of the sprinklers, the sprinklers must be on
 – If a person is wet because of rain, that person must not be carrying any umbrella
 – There is an umbrella that “lives in” your house, which is not in its house
 – An umbrella that is not in its house must be carried by some person who lives in that house
 – You are not carrying any umbrella

• Can you conclude that the sprinklers are on?
Theorem prover on the web


```
begin_problem(TinyProblem).
list_of_descriptions.
name({*TinyProblem*}).
author({*CPS570*}).
status(unknown).
description({*Just a test*}).
end_of_list.
list_of_symbols.
predicates[(F,1),(G,1)].
end_of_list.
list_of_formulae(axioms).
  formula(exists([U],F(U))).
  formula(forall([V],implies(F(V),G(V)))).
end_of_list.
list_of_formulae(conjectures).
  formula(exists([W],G(W))).
end_of_list.
end_problem.
```
Theorem prover on the web…

- begin_problem(ThreeSpouses).
- list_of_descriptions.
- name({*ThreeSpouses*}).
- author({*CPS570*}).
- status(unknown).
- description({*Three Spouses*}).
- end_of_list.
- list_of_symbols.
- functions[spouse].
- end_of_list.
- list_of_formulae(axioms).
 - formula(exists([X],exists([Y],exists([Z],and(not(equal(X,Y)),and(not(equal(X,Z)),not(equal(Y,Z))))))).
 - formula(forall([W],forall([X],forall([Y],forall([Z],or(equal(W,X),or(equal(W,Y),or(equal(W,Z),or(equal(X,Y),or(equal(X,Z),equal(Y,Z))))))))))).
 - formula(forall([X],forall([Y],implies(equal(spouse(X),Y),equal(spouse(Y),X))))).
- end_of_list.
- list_of_formulae(conjectures).
 - formula(exists([X],equal(spouse(X),X))).
- end_of_list.
- end_problem.
Theorem prover on the web...

- begin_problem(TwoOrThreeSpouses).
- list_of_descriptions.
- name({'TwoOrThreeSpouses'}).
- author({'CPS570'}).
- status(unknown).
- description({'TwoOrThreeSpouses'}).
- end_of_list.
- list_of_symbols.
- functions[spouse].
- end_of_list.
- list_of_formulae(axioms).
 - formula(exists([X],exists([Y],not(equal(X,Y))))).
 - formula(forall([W],forall([X],forall([Y],forall([Z],or(equal(W,X),or(equal(W,Y),or(equal(W,Z),or(equal(X,Y),or(equal(X,Z),equal(Y,Z))))))))))).
 - formula(forall([X],forall([Y],implies(equal(spouse(X),Y),equal(spouse(Y),X))))).
- end_of_list.
- list_of_formulae(conjectures).
 - formula(exists([X],equal(spouse(X),X))).
- end_of_list.
- end_problem.
Theorem prover on the web...

- begin_problem(Umbrellas).
- list_of_descriptions.
- name({"Umbrellas"}).
- author({"CPS570"}).
- status(unknown).
- description({"Umbrellas"}).
- end_of_list.
- list_of_symbols.
- functions[[House,1], [You,0]].
- predicates[[Person,1], [Wet,1], [WetDueToR,1], [WetDueToS,1], [SprinklersOn,0], [Umbrella,1], [Carrying,2], [NotAtHome,1]].
- end_of_list.
- list_of_formulae(axioms).
- formula(forall([X], forall([Y], implies(and(Person(X), and(Person(Y), and(not(equal(X,You)), and(not(equal(Y,You)), and(equal(House(X),House(You)), equal(House(Y),House(You))))))), equal(X,Y))))).
- formula(exists([X], and(Person(X), and(equal(House(You),House(X))), and(not(equal(X,You)), Wet(X))))).
- formula(forall([X], implies(and(Person(X), Wet(X)), or(WetDueToR(X), WetDueToS(X)))))).
- formula(forall([X], implies(and(Person(X), WetDueToS(X)), SprinklersOn))).
- formula(forall([X], implies(and(Person(X), WetDueToR(X)), forall([Y], implies(Umbrella(Y), not(Carrying(X,Y))))))).
- formula(exists([X], and(Umbrella(X), and(equal(House(X),House(You))), NotAtHome(X))))).
- formula(forall([X], implies(and(Umbrella(X), NotAtHome(X)), exists([Y], and(Person(Y), and(equal(House(X),House(Y))), Carrying(Y,X))))))
- formula(forall([X], implies(Umbrella(X), not(Carrying(You,X))))).
- end_of_list.
- list_of_formulae(conjectures).
- formula(SprinklersOn).
- end_of_list.
- end_problem.
Applications

• Some serious novel mathematical results proved
• Verification of hardware and software
 – Prove outputs satisfy required properties for all inputs
• Synthesis of hardware and software
 – Try to prove that there exists a program satisfying such and such properties, in a constructive way
• Also: contributions to planning (up next)