CPS 570: Artificial Intelligence

Two-player, zero-sum, perfect-information Games

Instructor: Vincent Conitzer
Game playing

• Rich tradition of creating game-playing programs in AI
• Many similarities to search
• Most of the games studied
 – have two players,
 – are zero-sum: what one player wins, the other loses
 – have perfect information: the entire state of the game is known to both players at all times
• E.g., tic-tac-toe, checkers, chess, Go, backgammon, …
• Will focus on these for now
• Recently more interest in other games
 – Esp. games without perfect information; e.g., poker
 • Need probability theory, game theory for such games
“Sum to 2” game

- Player 1 moves, then player 2, finally player 1 again
- Move = 0 or 1
- Player 1 wins if and only if all moves together sum to 2

Player 1’s utility is in the leaves; player 2’s utility is the negative of this
Backward induction (aka. minimax)

- From leaves upward, analyze best decision for player at node, give node a value
 - Once we know values, easy to find optimal action (choose best value)
Modified game

- From leaves upward, analyze best decision for player at node, give node a value.
A recursive implementation

- **Value(state)**
- If state is terminal, return its value
- If (player(state) = player 1)
 - \(v := -\infty \)
 - For each action
 - \(v := \max(v, \text{Value(successor(state, action)))} \)
 - Return \(v \)
- Else
 - \(v := \infty \)
 - For each action
 - \(v := \min(v, \text{Value(successor(state, action)))} \)
 - Return \(v \)

Space? Time?
Do we need to see all the leaves?

- Do we need to see the value of the question mark here?
Do we need to see all the leaves?

• Do we need to see the values of the question marks here?
Alpha-beta pruning

• Pruning = cutting off parts of the search tree (because you realize you don’t need to look at them)
 – When we considered A* we also pruned large parts of the search tree

• Maintain alpha = value of the best option for player 1 along the path so far

• Beta = value of the best option for player 2 along the path so far
Pruning on beta

• Beta at node v is -1

• We know the value of node v is going to be at least 4, so the -1 route will be preferred

• No need to explore this node further
Pruning on alpha

- Alpha at node w is 6
- We know the value of node w is going to be at most -1, so the 6 route will be preferred
- No need to explore this node further
Modifying recursive implementation to do alpha-beta pruning

• Value(state, alpha, beta)
• If state is terminal, return its value
• If (player(state) = player 1)
 – v := -infinity
 – For each action
 • v := max(v, Value(successor(state, action), alpha, beta))
 • If v >= beta, return v
 • alpha := max(alpha, v)
 – Return v
• Else
 – v := infinity
 – For each action
 • v := min(v, Value(successor(state, action), alpha, beta))
 • If v <= alpha, return v
 • beta := min(beta, v)
 – Return v
Benefits of alpha-beta pruning

• Without pruning, need to examine $O(b^m)$ nodes

• With pruning, depends on which nodes we consider first

• If we choose a random successor, need to examine $O(b^{3m/4})$ nodes

• If we manage to choose the best successor first, need to examine $O(b^{m/2})$ nodes
 – Practical heuristics for choosing next successor to consider get quite close to this

• Can effectively look twice as deep!
 – Difference between reasonable and expert play
Repeated states

• As in search, multiple sequences of moves may lead to the same state

• Again, can keep track of previously seen states (usually called a transposition table in this context)
 – May not want to keep track of all previously seen states…
Using evaluation functions

- Most games are too big to solve even with alpha-beta pruning
- Solution: Only look ahead to limited depth (nonterminal nodes)
- Evaluate nodes at depth cutoff by a heuristic (aka. evaluation function)
- E.g., chess:
 - Material value: queen worth 9 points, rook 5, bishop 3, knight 3, pawn 1
 - Heuristic: difference between players’ material values
Chess example

- White to move

- Depth cutoff: 3 ply
 - Ply = move by one player

- Initial position:

```
  K  K
  p  p
  p  p
B  R
  p  R
  K
```

- Tree representation:

```
  White
  
  Rd8+

  Black
  
  Kb7
  
  White
  
  Rxf8
  
  Re8

  ...  2

  ...  -1
```
Chess (bad) example

- White to move

Depth cutoff: 3 ply
 - Ply = move by one player

Depth cutoff obscures fact that white R will be captured
Addressing this problem

• Try to evaluate whether nodes are quiescent
 – Quiescent = evaluation function will not change rapidly in near future
 – Only apply evaluation function to quiescent nodes

• If there is an “obvious” move at a state, apply it before applying evaluation function
Playing against suboptimal players

• Minimax is optimal against other minimax players

• What about against players that play in some other way?
Many-player, general-sum games of perfect information

- Basic backward induction still works
 - No longer called minimax

What if other players do not play this way?

Vector of numbers gives each player's utility
Games with random moves by “Nature”

- E.g., games with dice (Nature chooses dice roll)
- Backward induction still works…
 - Evaluation functions now need to be cardinally right (not just ordinally)
 - For two-player zero-sum games with random moves, can we generalize alpha-beta? How?

```
+-------------+-------------+-------------+-------------+
<table>
<thead>
<tr>
<th>Player 1</th>
<th>Player 2</th>
<th>Player 2</th>
<th>Player 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Nature</td>
<td>(2,3.5)</td>
<td>(3,4)</td>
<td>(1,2)</td>
</tr>
<tr>
<td>50%</td>
<td>50%</td>
<td>40%</td>
<td>60%</td>
</tr>
<tr>
<td>Player 2</td>
<td>(1,3)</td>
<td>(3,2)</td>
<td>(3,4)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>50%</td>
<td>50%</td>
<td>40%</td>
<td>60%</td>
</tr>
<tr>
<td>Player 2</td>
<td>(1,3)</td>
<td>(3,2)</td>
<td>(3,4)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>50%</td>
<td>50%</td>
<td>40%</td>
<td>60%</td>
</tr>
<tr>
<td>Player 2</td>
<td>(1,3)</td>
<td>(3,2)</td>
<td>(3,4)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>50%</td>
<td>50%</td>
<td>40%</td>
<td>60%</td>
</tr>
<tr>
<td>Player 2</td>
<td>(1,3)</td>
<td>(3,2)</td>
<td>(3,4)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>50%</td>
<td>50%</td>
<td>40%</td>
<td>60%</td>
</tr>
<tr>
<td>Player 2</td>
<td>(1,3)</td>
<td>(3,2)</td>
<td>(3,4)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>50%</td>
<td>50%</td>
<td>40%</td>
<td>60%</td>
</tr>
<tr>
<td>Player 2</td>
<td>(1,3)</td>
<td>(3,2)</td>
<td>(3,4)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>50%</td>
<td>50%</td>
<td>40%</td>
<td>60%</td>
</tr>
<tr>
<td>Player 2</td>
<td>(1,3)</td>
<td>(3,2)</td>
<td>(3,4)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>50%</td>
<td>50%</td>
<td>40%</td>
<td>60%</td>
</tr>
</tbody>
</table>
```

Games with imperfect information

- Players cannot necessarily see the whole current state of the game
 - Card games

- Ridiculously simple poker game:
 - Player 1 receives King (winning) or Jack (losing),
 - Player 1 can raise or check,
 - Player 2 can call or fold

- Dashed lines indicate indistinguishable states

- Backward induction does not work, need random strategies for optimality! (more later in course)
Intuition for need of random strategies

• Suppose my strategy is “raise on King, check on Jack”
 – What will you do?
 – What is your expected utility?

• What if my strategy is “always raise”?

• What if my strategy is “always raise when given King, 10% of the time raise when given Jack”?
The state of the art for some games

• Chess:
 – 1997: IBM Deep Blue defeats Kasparov
 – … there is still debate about whether computers are really better

• Checkers:
 – Computer world champion since 1994
 – … there was still debate about whether computers are really better…
 – until 2007: checkers solved optimally by computer

• Go:
 – Computers still not as good as humans
 – Branching factor really high
 – Recent progress

• Poker:
 – Competitive with top humans in some 2-player games
 – 3+ player case much less well-understood
Is this of any value to society?

- Some of the techniques developed for games have found applications in other domains
 - Especially “adversarial” settings
- Real-world strategic situations are usually not two-player, perfect-information, zero-sum, …
- But game theory does not need any of those
- Example application: security scheduling at airports