CPS 570: Artificial Intelligence

http://www.cs.duke.edu/courses/fall14/compsci570/

Introduction

Instructor: Vincent Conitzer
Basic information about course

• WF 10:05-11:20am, LSRC D106
• Text: Artificial Intelligence: A Modern Approach
• Instructor: Vincent Conitzer
 – Research on computational aspects of (micro)economics, game theory, systems with multiple intelligent agents
• TA: Andrew Kephart
 – 2nd-year CS Ph.D. student at Duke working with Vince
Prerequisites

• Comfortable programming in language such as C (or C++), Java, …

• Some knowledge of algorithmic concepts such as running times of algorithms; having some rough idea of what NP-hard means

• Some familiarity with probability (we will go over this from the beginning but we will cover the basics only briefly)

• Not scared of mathematics, some background in discrete mathematics, able to do simple mathematical proofs

• If you do not have a standard undergraduate computer science background, talk to me first.

• Well-prepared undergraduates are certainly welcome

• You do not need to have taken an undergraduate AI course (though of course it will help if you have)
Grading

• Assignments: 35%
 – May discuss with another person; writeup and code must be your own
• Midterm exams: 30%
• Final exam: 30%
• Participation: 5%
What is artificial intelligence?

- Popular conception driven by *science fiction*
 - Robots good at everything except *emotions, empathy, appreciation of art, culture, …*
 - … until later in the movie.
 - Perhaps more representative of human *autism* than of (current) real robotics/AI
 - “It is my belief that the existence of autism has contributed to [the theme of the intelligent but soulless automaton] in no small way.” [Uta Frith, “Autism”]
 - Current AI is also bad at lots of simpler stuff!
 - There *is* a lot of AI work on thinking about what other agents are thinking
Real AI

• A serious science.

• General-purpose AI like the robots of science fiction is incredibly hard
 – Human brain appears to have lots of special and general functions, integrated in some amazing way that we really do not understand at all (yet)

• Special-purpose AI is more doable (nontrivial)
 – E.g., chess/poker playing programs, logistics planning, automated translation, voice recognition, web search, data mining, medical diagnosis, keeping a car on the road, … … … … …
Definitions of AI

- If our system can be more rational than humans in some cases, why not?

<table>
<thead>
<tr>
<th>Systems that think like humans</th>
<th>Systems that think rationally</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systems that act like humans</td>
<td>Systems that act rationally</td>
</tr>
</tbody>
</table>

- We will mostly follow “act rationally” approach
 - Distinction may not be that important
 - Acting rationally/like a human presumably requires (some sort of) thinking rationally/like a human,
 - Humans much more rational anyway in complex domains
“Chinese room” argument [Searle 1980]

- **Person** who knows English but not Chinese sits in room
- Receives notes in Chinese
- Has systematic English **rule book** for how to write new Chinese characters based on input Chinese characters, returns his notes
 - Person=CPU, rule book=AI program, really also need lots of paper (storage)
 - Has no understanding of what they mean
 - But from the outside, the room gives perfectly reasonable answers in Chinese!
- Searle’s argument: the room has no intelligence in it!
Turing Test

- (Human) judge communicates with a human and a machine over text-only channel,
- Both human and machine try to act like a human,
- Judge tries to tell which is which.
- Numerous variants
- Loebner prize
Turing Test on unsuspecting judges

• It is possible to (temporarily) fool humans who do not realize they may be talking to a bot

• ELIZA program [Weizenbaum 66] rephrases partner’s statements and questions (~psychotherapist)
Modern variant: AOLiza

five: just asking if richard can tell me about some good lobster diving spots thats it if this is a problem then forget iot i dont know whats going on on here

AOLiza: that is interesting. please continue.

five: continue what just ask richard when he gets home about some lobster diving up hat way thats all if you got a problem with it then forget it, this isnt worht it i dont know whats been going on or what bev has told you but i havent done anything to anybody iam the one that got used and dumped

AOLiza: tell me more about that.

five: about what

AOLiza: what do you think?

five: therers nothing to tell she us3ed me then got tired of me said i wasnt her type anymore i was possesive and controlling

AOLiza: perhaps i already know you were possesive and controlling.

five: i was huh you nuts i gave her all the room she wanted never told nhewre what to do or where to go
Is Turing Test the right goal?

• “Aeronautical engineering texts do not define the goal of their field as making ‘machines that fly so exactly like pigeons that they can fool even other pigeons.’” [Russell and Norvig]
Lessons from AI research

- Clearly-defined tasks that we think require intelligence and education from humans tend to be doable for AI techniques
 - Playing chess, drawing logical inferences from clearly-stated facts, performing probability calculations in well-defined environments, …
 - Although, scalability can be a significant issue

- Complex, messy, ambiguous tasks that come natural to humans (in some cases other animals) are much harder
 - Recognizing your grandmother in a crowd, drawing the right conclusion from an ungrammatical or ambiguous sentence, driving around the city, …

- Humans better at coming up with reasonably good solutions in complex environments

- Humans better at adapting/self-evaluation/creativity (“My usual strategy for chess is getting me into trouble against this person… Why? What else can I do?”)
Early history of AI

• 50s/60s: Early successes! AI can draw logical conclusions, prove some theorems, create simple plans… Some initial work on neural networks…

• Led to overhyping: researchers promised funding agencies spectacular progress, but started running into difficulties:
 – **Ambiguity**: highly funded translation programs (Russian to English) were good at syntactic manipulation but bad at disambiguation
 • “The spirit is willing but the flesh is weak” becomes “The vodka is good but the meat is rotten”
 – **Scalability/complexity**: early examples were very small, programs could not scale to bigger instances
 – Limitations of **representations** used
History of AI…

• 70s, 80s: Creation of expert systems (systems specialized for one particular task based on experts’ knowledge), wide industry adoption

• Again, overpromising…

• … led to AI winter(s)
 – Funding cutbacks, bad reputation
Modern AI

- More rigorous, scientific, formal/mathematical
- Fewer grandiose promises
- Divided into many subareas interested in particular aspects
- More directly connected to “neighboring” disciplines
 - Theoretical computer science, statistics, economics, operations research, biology, psychology/neuroscience, …
 - Often leads to question “Is this really AI”?
- Some senior AI researchers are calling for re-integration of all these topics, return to more grandiose goals of AI
 - Somewhat risky proposition for graduate students and junior faculty…
Some AI videos

• Note: there is a lot of AI that is not quite this “sexy” but still very valuable!
 – E.g. logistics planning – DARPA claims that savings from a single AI planning application during 1991 Persian Gulf crisis more than paid back for all of DARPA’s investment in AI, ever. [Russell and Norvig]

• https://www.youtube.com/watch?v=1JJsBFiXGI0
• https://www.youtube.com/watch?v=s6VIWDUHTa4
• http://www.aaaivideos.org/2007/aibo_ingenuity/
• http://www.aaaivideos.org/2012/ai_vs_ai_chatbots/
• https://www.youtube.com/watch?v=yJptrICVDHI
• https://www.youtube.com/watch?v=ScXX2bndGJc
This course

• Focus on general AI techniques that have been useful in many applications

• Will try to avoid application-specific techniques (still interesting and worthwhile!)
Topics

• Search
• Constraint satisfaction problems
• Game playing
• Logic, knowledge representation
• Planning
• Probability, decision theory, game theory, reasoning under uncertainty
• Machine learning, reinforcement learning (briefly, if time allows)
Nonexhaustive list of AI publications

- General AI conferences: IJCAI, AAAI, ECAI
- Reasoning under uncertainty: UAI
- Machine learning: ICML, NIPS
- Multiagent systems: AAMAS
- Vision: ICCV, CVPR

- AI Magazine
AI at Duke

- Vince Conitzer
 - Systems with multiple self-interested agents, game theory, economics

- George Konidaris
 - Robotics, planning, reinforcement learning,

- Ron Parr
 - Reasoning under uncertainty, reinforcement learning, robotics

- Carlo Tomasi
 - Computer vision, medical imaging

- Alex Hartemink
 - Computational biology, machine learning, reasoning under uncertainty

- Bruce Donald
 - Computational biology & chemistry

- Sayan Mukherjee
 - Statistics, machine learning

- Duke Robotics, Intelligence, and Vision (DRIV) seminar (=AI seminar)
 - Website: http://driv.cs.duke.edu/
 - Mailing list: https://lists.duke.edu/sympa/info/drive