CPS 570: Artificial Intelligence

Search

Instructor: Vincent Conitzer
Search

• We have some actions that can change the state of the world
 – Change induced by an action perfectly predictable

• Try to come up with a sequence of actions that will lead us to a goal state
 – May want to minimize number of actions
 – More generally, may want to minimize total cost of actions

• Do not need to execute actions in real life while searching for solution!
 – Everything perfectly predictable anyway
A simple example: traveling on a graph
Searching for a solution

start state

F

goal state

C

2

B

9

A

3

D

3

2

2

3
search tree nodes and states are not the same thing!
Full search tree

- **State**: A, **Cost**: 0
- **State**: B, **Cost**: 3
- **State**: C, **Cost**: 5
- **State**: A, **Cost**: 7
- **State**: F, **Cost**: 12
- **State**: E, **Cost**: 7
- **State**: D, **Cost**: 10
- **State**: F, **Cost**: 11

Goal state!
Changing the goal: want to visit all vertices on the graph

need a different definition of a state
“currently at A, also visited B, C already”
large number of states: \(n \times 2^{n-1} \)
could turn these into a graph, but…
What would happen if the goal were to visit every location twice?
Key concepts in search

• Set of states that we can be in
 – Including an initial state…
 – … and goal states (equivalently, a goal test)

• For every state, a set of actions that we can take
 – Each action results in a new state
 – Typically defined by successor function
 • Given a state, produces all states that can be reached from it

• Cost function that determines the cost of each action (or path = sequence of actions)

• Solution: path from initial state to a goal state
 – Optimal solution: solution with minimal cost
8-puzzle

![8-puzzle state](image)

goal state
8-puzzle
Generic search algorithm

• Fringe = set of nodes generated but not expanded

• fringe := \{node with initial state\}

• loop:
 – if fringe empty, declare failure
 – choose and remove a node v from fringe
 – check if v’s state s is a goal state; if so, declare success
 – if not, expand v, insert resulting nodes into fringe

• Key question in search: Which of the generated nodes do we expand next?
Uninformed search

- Given a state, we only know whether it is a goal state or not
- Cannot say one nongoal state looks better than another nongoal state
- Can only traverse state space blindly in hope of somehow hitting a goal state at some point
 - Also called blind search
 - Blind does not imply unsystematic!
Breadth-first search
Properties of breadth-first search

• Nodes are expanded in the same order in which they are generated
 – Fringe can be maintained as a First-In-First-Out (FIFO) queue

• BFS is **complete**: if a solution exists, one will be found

• BFS finds a **shallowest** solution
 – Not necessarily an optimal solution

• If every node has b successors (the **branching factor**), first solution is at depth d, then fringe size will be at least b^d at some point
 – This much space (and time) required 😞
Depth-first search
Implementing depth-first search

• Fringe can be maintained as a Last-In-First-Out (LIFO) queue (aka a stack)

• Also easy to implement recursively:

• DFS(node)
 – If goal(node) return solution(node);
 – For each successor of node
 • Return DFS(successor) unless it is failure;
 – Return failure;
Properties of depth-first search

- Not complete (might cycle through nongoal states)
- If solution found, generally not optimal/shallowest
- If every node has b successors (the branching factor), and we search to at most depth m, fringe is at most b^m
 - Much better space requirement 😊
 - Actually, generally don’t even need to store all of fringe
- Time: still need to look at every node
 - $b^m + b^{m-1} + \ldots + 1$ (for $b>1$, $O(b^m)$)
 - Inevitable for uninformed search methods…
Combining good properties of BFS and DFS

- **Limited depth DFS**: just like DFS, except never go deeper than some depth d

- **Iterative deepening DFS**:
 - Call limited depth DFS with depth 0;
 - If unsuccessful, call with depth 1;
 - If unsuccessful, call with depth 2;
 - Etc.

- **Complete**, finds shallowest solution

- **Space requirements of DFS**

- **May seem wasteful timewise because replicating effort**
 - Really not that wasteful because *almost all effort at deepest level*
 - \(db + (d-1)b^2 + (d-2)b^3 + \ldots + 1b^d\) is \(O(b^d)\) for \(b > 1\)
Let’s start thinking about cost

- BFS finds shallowest solution because always works on shallowest nodes first
- Similar idea: always work on the lowest-cost node first (uniform-cost search)
- Will find optimal solution (assuming costs increase by at least constant amount along path)
- Will often pursue lots of short steps first
- If optimal cost is C, and cost increases by at least L each step, we can go to depth C/L
- Similar memory problems as BFS
 - Iterative lengthening DFS does DFS up to increasing costs
Searching backwards from the goal

- Sometimes can search backwards from the goal
 - Maze puzzles
 - Eights puzzle
 - Reaching location F
 - What about the goal of “having visited all locations”?

- Need to be able to compute *predecessors* instead of successors

- What’s the point?
Predecessor branching factor can be smaller than successor branching factor.

- Stacking blocks:
 - only action is to add something to the stack

 In hand: A, B, C

 Start state

 In hand: nothing

 Goal state

We’ll see more of this...
Bidirectional search

- Even better: search from both the start and the goal, in parallel!

- If the shallowest solution has depth d and branching factor is b on both sides, requires only $O(b^{d/2})$ nodes to be explored!
Making bidirectional search work

• Need to be able to figure out whether the fringes intersect
 – Need to keep at least one fringe in memory…

• Other than that, can do various kinds of search on either tree, and get the corresponding optimality etc. guarantees

• Not possible (feasible) if backwards search not possible (feasible)
 – Hard to compute predecessors
 – High predecessor branching factor
 – Too many goal states
Repeated states

- Repeated states can cause incompleteness or enormous runtimes
- Can maintain list of previously visited states to avoid this
 - If new path to the same state has greater cost, don’t pursue it further
 - Leads to time/space tradeoff
- “Algorithms that forget their history are doomed to repeat it” [Russell and Norvig]
Informed search

• So far, have assumed that no nongoal state looks better than another

• Unrealistic
 – Even without knowing the road structure, some locations seem closer to the goal than others
 – Some states of the 8s puzzle seem closer to the goal than others

• Makes sense to expand closer-seeming nodes first
Heuristics

• Key notion: heuristic function $h(n)$ gives an estimate of the distance from n to the goal
 - $h(n)=0$ for goal nodes

• E.g. straight-line distance for traveling problem

```
<table>
<thead>
<tr>
<th>Node</th>
<th>h Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>9</td>
</tr>
<tr>
<td>B</td>
<td>8</td>
</tr>
<tr>
<td>C</td>
<td>9</td>
</tr>
<tr>
<td>D</td>
<td>6</td>
</tr>
<tr>
<td>E</td>
<td>3</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
</tr>
</tbody>
</table>
```

• We’re adding something new to the problem!
• Can use heuristic to decide which nodes to expand first
Greedy best-first search

- Greedy best-first search: expand nodes with lowest h values first

- Rapidly finds the optimal solution!

- Does it always?
A bad example for greedy

- Say: $h(A) = 9$, $h(B) = 5$, $h(D) = 6$, $h(E) = 3$, $h(F) = 0$
- Problem: greedy evaluates the promise of a node only by how far is left to go, does not take cost occurred already into account
A*

- Let $g(n)$ be cost incurred already on path to n
- Expand nodes with lowest $g(n) + h(n)$ first

- Say: $h(A) = 9$, $h(B) = 5$, $h(D) = 6$, $h(E) = 3$, $h(F) = 0$

- Note: if $h=0$ everywhere, then just uniform cost search
Admissibility

• A heuristic is **admissible** if it never overestimates the distance to the goal
 – If \(n \) is the optimal solution reachable from \(n' \), then \(g(n) \geq g(n') + h(n') \)

• Straight-line distance is admissible: can’t hope for anything better than a straight road to the goal

• Admissible heuristic means that A* is always optimistic
Optimality of A*

• If the heuristic is admissible, A* is optimal (in the sense that it will never return a suboptimal solution)

• Proof:
 – Suppose a suboptimal solution node n with solution value $C > C^*$ is about to be expanded (where C^* is optimal)
 – Let n^* be an optimal solution node (perhaps not yet discovered)
 – There must be some node n' that is currently in the fringe and on the path to n^*
 – We have $g(n) = C > C^* = g(n^*) \geq g(n') + h(n')$
 – But then, n' should be expanded first (contradiction)
A* is not complete (in contrived examples)

- No optimal search algorithm can succeed on this example (have to keep looking down the path in hope of suddenly finding a solution)
Consistency

• A heuristic is consistent if the following holds: if one step takes us from \(n\) to \(n'\), then \(h(n) \leq h(n') + \text{cost of step from } n \text{ to } n'\)

 – Similar to triangle inequality

 – Equivalently, \(g(n) + h(n) \leq g(n') + h(n')\)

• Implies admissibility

• It’s strange for an admissible heuristic not to be consistent!

 – Suppose \(g(n) + h(n) > g(n') + h(n')\). Then at \(n'\), we know the remaining cost is at least \(h(n) - (g(n') - g(n))\), otherwise the heuristic wouldn’t have been admissible at \(n\). But then we can safely increase \(h(n')\) to this value.
A* is optimally efficient

- A* is optimally efficient in the sense that any other optimal algorithm must expand at least the nodes A* expands, if the heuristic is consistent.

- **Proof:**
 - Besides solution, A* expands exactly the nodes with \(g(n) + h(n) < C^* \) (due to consistency).
 - Assuming it does not expand non-solution nodes with \(g(n) + h(n) = C^* \).
 - Any other optimal algorithm must expand at least these nodes (since there may be a better solution there).

- **Note:** This argument assumes that the other algorithm uses the same heuristic h.
A* and repeated states

- Suppose we try to avoid repeated states
- Ideally, the second (or third, ...) time that we reach a state the cost is at least as high as the first time
 - Otherwise, have to update everything that came after
- This is guaranteed if the heuristic is consistent
Proof

• Suppose n and n’ correspond to same state, n’ is cheaper to reach, but n is expanded first

• n’ cannot have been in the fringe when n was expanded because $g(n') < g(n)$, so
 - $g(n') + h(n') < g(n) + h(n)$

• So n’ is generated (eventually) from some other node n” currently in the fringe, after n is expanded
 - $g(n) + h(n) \leq g(n'') + h(n'')$

• Combining these, we get
 - $g(n') + h(n') < g(n'') + h(n'')$, or equivalently
 - $h(n'') > h(n') + \text{cost of steps from n” to n’}$
 • Violates consistency
Iterative Deepening A*

• One big drawback of A* is the space requirement: similar problems as uniform cost search, BFS

• **Limited-cost depth-first A***: some cost cutoff c, any node with \(g(n) + h(n) > c \) is not expanded, otherwise DFS

• **IDA*** gradually increases the cutoff of this

• Can require lots of iterations
 – Trading off space and time…
 – **RBFS** algorithm reduces wasted effort of IDA*, still linear space requirement
 – **SMA*** proceeds as A* until memory is full, then starts doing other things
More about heuristics

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>

- One heuristic: number of misplaced tiles
- Another heuristic: sum of Manhattan distances of tiles to their goal location
 - Manhattan distance = number of moves required if no other tiles are in the way
- Admissible? Which is better?
- Admissible heuristic h_1 dominates admissible heuristic h_2 if $h_1(n) \geq h_2(n)$ for all n
 - Will result in fewer node expansions
- “Best” heuristic of all: solve the remainder of the problem optimally with search
 - Need to worry about computation time of heuristics…
Designing heuristics

• One strategy for designing heuristics: relax the problem (make it easier)

• “Number of misplaced tiles” heuristic corresponds to relaxed problem where tiles can jump to any location, even if something else is already there

• “Sum of Manhattan distances” corresponds to relaxed problem where multiple tiles can occupy the same spot

• Another relaxed problem: only move 1,2,3,4 into correct locations

• The ideal relaxed problem is
 – easy to solve,
 – not much cheaper to solve than original problem

• Some programs can successfully automatically create heuristics
Macro-operators

- Perhaps a more human way of thinking about search in the eights puzzle:

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

sequence of operations = macro-operation

<table>
<thead>
<tr>
<th>8</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

- We swapped two adjacent tiles, and rotated everything

- Can get all tiles in the right order this way
 - Order might still be rotated in one of eight different ways; could solve these separately

- Optimality?

- Can AI think about the problem this way? Should it?