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ABSTRACT

Software Defined Networking (SDN) has become a popular paradigm

for centralized control in many modern networking scenarios such
as data centers and cloud. For large data centers hosting many hun-
dreds of thousands of servers, there are few thousands of switches
that need to be managed in a centralized fashion, which cannot be
done using a single controller node. Previous works have proposed
distributed controller architectures to address scalability issues. A
key limitation of these works, however, is that the mapping be-
tween a switch and a controller is statically configured, which may
result in uneven load distribution among the controllers as traffic
conditions change dynamically.

To address this problem, we propose ElastiCon, an elastic dis-
tributed controller architecture in which the controller pool is dy-
namically grown or shrunk according to traffic conditions. To ad-
dress the load imbalance caused due to spatial and temporal varia-
tions in the traffic conditions, ElastiCon automatically balances the
load across controllers thus ensuring good performance at all times
irrespective of the traffic dynamics. We propose a novel switch mi-
gration protocol for enabling such load shifting, which conforms
with the Openflow standard. We further design the algorithms for
controller load balancing and elasticity. We also build a prototype
of ElastiCon and evaluate it extensively to demonstrate the efficacy
of our design.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems

Keywords

Data center networks; software-defined networks

1. INTRODUCTION

Software Defined Networking (SDN) has emerged as a popular
paradigm for managing large-scale networks including data centers
and cloud. The key tenet of SDN is the centralized control plane
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architecture, which allows the network to be programmed by appli-
cations running on one central entity, enabling easier management
and faster innovation [13, 9, 5, 16]. However, many of these large-
scale data center networks consist of several hundreds of thou-
sands of servers interconnected with few thousands of switches in
tree-like topologies (e.g., fat tree), that cannot easily be controlled
by a single centralized controller. Hence the next logical step is
to build a logically centralized, but physically distributed control
plane, which can benefit from the scalability and reliability of the
distributed architecture while preserving the simplicity of a logi-
cally centralized system.

A few recent papers have explored architectures for building dis-
tributed SDN controllers [12, 20, 15]. While these have focused on
building the components necessary to implement a distributed SDN
controller, one key limitation of these systems is that the mapping
between a switch and a controller is statically configured, making it
difficult for the control plane to adapt to traffic load variations. Real
networks (e.g., data center networks, enterprise networks) exhibit
significant variations in both temporal and spatial traffic character-
istics. First, along the temporal dimension, it is generally well-
known that traffic conditions can depend on the time of day (e.g.,
less traffic during night), but there are variations even in shorter
time scales (e.g., minutes to hours) depending on the applications
running in the network. For instance, based on measurements over
real data centers in [3], we estimate that the peak-to-median ratio of
flow arrival rates is almost 1-2 orders of magnitude' (more details
in Section 2). Second, there are often spatial traffic variations; de-
pending on where applications are generating flows, some switches
observe a larger number of flows compared to other portions of the
network.

Now, if the switch to controller mapping is static, a controller
may become overloaded if the switches mapped to this controller
suddenly observe a large number of flows, while other controllers
remain underutilized. Furthermore, the load may shift across con-
trollers over time, depending on the temporal and spatial varia-
tions in traffic conditions. Hence static mapping can result in sub-
optimal performance. One way to improve performance is to over-
provision controllers for an expected peak load, but this approach
is clearly inefficient due to its high cost and energy consumption,
especially considering load variations can be up to two orders of
magnitude.

To address this problem, in this paper, we propose ElastiCon, an
elastic distributed controller architecture in which the controller
pool expands or shrinks dynamically as the aggregate load changes
over time. While such an elastic architecture can ensure there are
always enough controller resources to manage the traffic load, per-

'This analysis is based on the reactive flow installation although
our design supports proactive mode as well.



formance can still be bad if the load is not distributed among these
different controllers evenly. For example, if the set of switches
that are connected to one controller are generating most of the traf-
fic while the others are not, this can cause the performance to dip
significantly even though there are enough controller resources in
the overall system. To address this problem, ElastiCon periodically
monitors the load on each controller, detects imbalances, and auto-
matically balances the load across controllers by migrating some
switches from the overloaded controller to a lightly-loaded one.
This way, ElastiCon ensures predictable performance even under
highly dynamic workloads.

Migrating a switch from one controller to another in a naive fash-
ion can cause disruption to ongoing flows, which can severely im-
pact the various applications running in the data center. Unfortu-
nately, the current de facto SDN standard, OpenFlow does not pro-
vide a disruption-free migration operation natively. To address this
shortcoming, we propose a new 4-phase migration protocol that
ensures minimal disruption to ongoing flows. Our protocol makes
minimal assumptions about the switch architecture and is Open-
Flow standard compliant. The basic idea in our protocol involves
creating a single trigger event that can help determine the exact mo-
ment of handoff between the first controller and second controller.
We exploit OpenFlow’s “equal mode” semantics to ensure such a
single trigger event to be sent to both the controllers that can allow
the controllers to perform the handoff in a disruption-free manner
without safety or liveness concerns.

Armed with this disruption-free migration primitive, ElastiCon
supports the following three main load adaptation operations: First,
it monitors the load on all controllers and periodically load bal-
ances the controllers by optimizing the switch-to-controller map-
ping. Second, if the aggregate load exceeds the maximum capacity
of existing controllers, it grows the resource pool by adding new
controllers, triggering switch migrations to utilize the new con-
troller resource. Similarly, when the load falls below a particu-
lar level, it shrinks the resource pool accordingly to consolidate
switches onto fewer controllers. For all these actions, ElastiCon
uses simple algorithms to decide when and what switches to mi-
grate.

We have described a preliminary version of ElastiCon in [7] where
we focused mainly on the migration protocol. Additional contribu-
tions of this paper are as follows:

e We enhance the migration protocol to guarantee serializability.
We show how these guarantees simplify application-specific
modifications for moving state between controllers during switch
migration. The serializability guarantee requires buffering mes-
sages from the switch during migration. This impacts worst-
case message processing delay. Hence, we also explore the
trade-off between performance and consistency.

e We propose new algorithms for deciding when to grow or shrink
the controller resource pool, and trigger load balancing actions.

o We demonstrate the feasibility of ElastiCon by implementing
the enhanced migration protocol and proposed algorithms. We
address a practical concern of redirecting switch connections to
new controllers when the controller pool is grown or away from
controllers when the controller pool needs to be shrunk.

e We show that ElastiCon can ensure that performance remains
stable and predictable even under highly dynamic traffic condi-
tions.

2. BACKGROUND AND MOTIVATION

The OpenFlow network consists of both switches and a central
controller. A switch forwards packets according to rules stored in

its flow table. The central controller controls each switch by set-
ting up the rules. Multiple application modules can run on top of
the core controller module to implement different control logics
and network functions. Packet processing rules can be installed in
switches either reactively (when a new flow is arrived) or proac-
tively (controller installs rules beforehand). We focus on the per-
formance of the reactive mode in this paper. Although proactive
rule setup (e.g., DevoFlow [6]) can reduce controller load and flow
setup time, it is not often sufficient by itself as only a small number
of rules can be cached at switches, because TCAM table sizes in
commodity switches tend to be small for cost and power reasons.
Reactive mode allows the controller to be aware of the lifetime of
each flow from setup to teardown, and hence can potentially of-
fer better visibility than proactive mode. For low-end switches,
TCAM space is a major constraint. It may be difficult to install
all fine-grained microflow policies proactively. Reactive rule in-
sertion allows such rules to be installed selectively and hence may
reduce the TCAM size requirement. Thus, it is important to design
the controller for predictable performance irrespective of the traffic
dynamics.

Switch—controller communication. The OpenFlow protocol de-
fines the interface and message format between a controller and a
switch. When a flow arrives at a switch and does not match any
rule in the flow table, the switch buffers the packet and sends a
Packet-In message to the controller. The Packet-In message
contains the incoming port number, packet headers and the buffer
ID where the packet is stored. The controller may respond with
a Packet-Out message which contains the buffer ID of the cor-
responding Packet-In message and a set of actions (drop, for-
ward, etc.). For handling subsequent packets of the same flow,
the controller may send a Flow-Mod message with an add com-
mand to instruct the switch to insert rules into its flow table. The
rules match the subsequent packets of the same flow and hence al-
low the packets to be processed at line speed. Controller can also
delete rules at a switch by using Flow-Mod with delete command.
When a rule is deleted either explicitly or due to timeout, the switch
sends a Flow-Removed message to the controller if the “notifica-
tion” flag for the flow is set. In general, there is no guarantee on
the order of processing of controller messages at a switch. Barrier
messages are used to solve the synchronization problem. When the
switch receives a Barrier-Request message from the controller,
it sends a Barrier-Reply message back to the controller only af-
ter it has finished processing all the messages that it received before
the Barrier-Request.

Controller architecture. The controller architecture has evolved
from the original single-threaded design [10] to the more advanced
multi-threaded design [21, 2, 4, 8] in recent years. Despite the sig-
nificant performance improvement over time, the single-controller
systems still have limits on scalability and vulnerability. Some re-
search papers have also explored the implementation of distributed
controllers across multiple hosts [12, 20, 15]. The main focus of
these papers is to address the state consistency issues across dis-
tributed controller instances, while preserving good performance.
Onix, for instance, uses a transactional database for persistent but
less dynamic data, and memory-only DHT for data that changes
quickly but does not require consistency [12]. Hyperflow replicates
the events at all distributed nodes, so that each node can process
such events and update their local state [20]. [15] has further elab-
orated the state distribution trade-offs in SDNs. OpenDaylight [17]
is a recent open source distributed SDN controller. Like ElastiCon,
it uses a distributed data store for storing state information.

All existing distributed controller designs implicitly assume static
mapping between switches and controllers, and hence lack the ca-
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Figure 1: Basic distributed controller architecture.

pability of dynamic load adaptation and elasticity. However, the
following back-of-the-envelope calculation using real measurement
data shows that there is 1-2 orders of magnitude difference between
peak and median flow arrival rates at a switch. In [3], Benson er al.
show that the minimum inter flow arrival gap is 10us, while the
median ranges roughly from 300us to 2ms across different data
centers that they have measured. Assuming a data center with 100K
hosts and 32 hosts/rack, peak flow arrival rate can be up to 300M
with the median rate between 1.5M and 10M. Assuming 2M pack-
ets/sec throughput® for one controller [21], it requires only 1-5 con-
trollers to process the median load, but 150 for peak load. If we use
static mapping between switches and controllers and install all flow
table entries reactively, it requires significant over-provisioning of
resources which is inefficient in hardware and power; an elastic
controller that can dynamically adapt to traffic load is clearly more
desirable.

3. ELASTIC CONTROLLER DESIGN

We present the design and architecture of ElastiCon, an elastic
distributed SDN controller in this section. We describe the archi-
tecture of ElastiCon in three phases: First, we start with a basic
distributed controller design that spreads functionality across sev-
eral nodes by extending Floodlight, a Java-based open source con-
troller [8]. We then describe the 4-phase protocol for disruption-
free switch migration, which is one of the core primitives needed
for implementing an elastic controller. Finally, we discuss the al-
gorithms we use for elasticity and load adaptation in our design.

3.1 Basic Distributed Controller

The key components in our distributed controller design are shown
in Figure 1. It consists of a cluster of autonomous controller nodes
that coordinate amongst themselves to provide a consistent control
logic for the entire network. The physical network infrastructure
refers to the switches and links that carry data and control plane
traffic. Note that, for simplicity, we have omitted showing the phys-
ical topology of the network that includes the hosts and their inter-
connections with the switches in the network.

Typically, each switch connects to one controller. However, for
fault-tolerance purposes, it may be connected to more than one con-
troller with one master and the rest as slaves. We assume the control
plane is logically isolated from the data plane, and the control plane
traffic is not affected by data plane traffic. Each controller node has
a core controller module that executes all the functions of a cen-
tralized controller (i.e., connecting to a switch, event management
between a switch and an application). In addition, it coordinates
with other controllers to elect a master node for a newly connected

This is based on the learning switch application. Throughput is
lower for more complex applications, as shown in our experiments.

switch and orchestrates the migration of a switch to a different con-
troller.

The distributed data store provides the glue across the cluster
of controllers to enable a logically centralized controller. It stores
all switch-specific information that is shared among the controllers.
Each controller node also maintains a TCP connection with every
other controller node in the form of a full mesh. This full-mesh
topology is mainly for simplicity, but as the number of controllers
become exceedingly large, one may consider adding a point of in-
direction, similar to the route-reflector idea in scaling BGP con-
nections in ISP networks. For today’s data centers, maintaining a
full mesh across a few 100 controllers does not pose any scaling
concerns. A controller node uses this TCP connection for various
controller-to-controller messages, such as when sending messages
to a switch controlled by another node or coordinating actions dur-
ing switch migration. The application module implements the con-
trol logic of network applications, responsible for controlling the
switches for which its controller is the master. The fact that state
is maintained distributed data store makes switch migration easier
and also helps fast recovery from controller failures.

3.2 4-Phase Switch Migration Protocol

If we use a single SDN controller, since all switches are always
connected to this controller, there is no break in the control plane
processing. Moving to a distributed controller architecture does not
necessarily pose a problem so long as the switch-to-controller map-
ping stays static. However, such an architecture, which is employed
by previously proposed distributed controllers, cannot adapt to the
load imbalances caused by spatial and temporal variations in traf-
fic conditions. Once a controller becomes overloaded, the response
time for control plane messages becomes too high, thus impacting
flows and applications running in the data center. We can miti-
gate such imbalances by dynamically shifting load between exist-
ing controllers or by adding new nodes to the controller pool. The
basic granularity at which one can shift load is at a switch-level;
simply migrate a switch from an overloaded controller to a lightly
loaded one.

Unfortunately, there is no native support for safely migrating
switches in existing de facto SDN standard, OpenFlow, without
which one cannot guarantee that there is no impact to traffic dur-
ing migration. In particular, there are three standard properties any
migration protocol needs to provide—liveness, safety and serializ-
ability.

o Liveness. At least one controller is active for a switch at all
times. Otherwise, a new flow that arrives at a switch cannot
be properly routed causing disruption to that application. In
addition, if a controller has issued a command to a switch, it
needs to remain active until the switch finishes processing that
command.

o Safety. Exactly one controller processes every asynchronous
message from the switch; duplicate processing of asynchronous
messages such as Packet-In could result in duplicate entries
in the flow table, or even worse, inconsistency in the distributed
data store.

o Serializability. The controller processes events in the order
in which they are transmitted by the switch; if events are pro-
cessed in a different order, the controller’s view of the network
may be inconsistent with the state of the network. For instance,
if a link goes down and comes back up, the switch will gen-
erate a port status down message followed by a port status up.
However, if these events are processed in the wrong order, the
controller may assume that the link is permanently down.



Final Master
Controller Node B

Initial Master
Controller Node A

Switch X

Phase 2

m’

€« Xsumo y

Phase 3

Migration

ster
ole-Te! uest message o Ma:

Role-,
€ reply Inessage for Master

Figure 2: Message exchanges for switch migration.

Phase 4

———— XSUmo g

Now, consider the following naive protocol that OpenFlow readily
provides: The target controller can be first put in the slave mode
for the switch (see Section 4 for implementation details). The tar-
get controller then simply sends a Role-Request message to the
switch indicating that it wants to become the master. The switch
would set that controller as the master and the previous master as
slave. Such a naive and intuitive protocol can cause serious dis-
ruption to traffic since it can violate the liveness property. Assume
that the switch had sent a Packet-In message to the initial master.
If the switch receives the Role-Request message from the slave
before the Packet-Out message from the initial master, then the
switch will ignore the Packet-Out message since it is designed to
ignore messages from any controller which is not the master/equal.
Ideally, the switch can buffer all these Packet-In requests and try
retransmitting the Packet-In message to the new master, but that
makes the switch design complicated, which is not desirable.

In our protocol design, we assume we cannot modify the switch.
There are two additional issues: First, the OpenFlow standard clearly
states that a switch may process messages not necessarily in the or-
der they are received, mainly to allow multi-threaded implementa-
tions. We need to factor this in our protocol design. Second, the
standard does not specify explicitly whether the ordering of mes-
sages transmitted by the switch remains consistent across two con-
trollers that are in master/equal mode. This assumption, which is
clearly logical, is required for our protocol to work; allowing ar-
bitrary reordering of messages across two controllers will make an
already hard problem significantly harder. For ease of exposition,
we use X to denote the switch, which is being migrated from initial
controller A to target controller B. We first outline the key ideas
that provide the desired guarantees and then describe the protocol
in detail.

Liveness. To guarantee liveness, we first transition the target con-
troller B to equal mode. After that, we transition initial controller
A from master to slave mode and then transition controller B to
master mode. This ensures guarantees liveness since at least one
controller is active (master or equal mode) at a time.

Safety. Using an intermediate equal mode for the controller B
solves the liveness problem but it may violate the safety property
since both controllers may process messages from the switch caus-
ing inconsistencies and duplicate messages. To guarantee safety,
we create a single trigger event to stop message processing in the
first controller and start the same in the second one. Fortunately, we
can exploit the fact that Flow-Removed messages are transmitted
to all controllers operating in the equal mode. We therefore simply
insert a dummy flow entry into the switch and then remove the flow
entry, which will provide a single Flow-Removed event to both the
controllers to signal handoff.

Serializability. To guarantee serializability, the controller A should
complete processing its last message before the controller B can
process its first message. However, the first message for the B may
arrive before A completes processing its last message. So, we cache
messages at B until the A has finished processing its last message
and committed it to the switch.

Our protocol operates in four phases described below (shown in
Figure 2). We now describe each phase in detail and highlight a
trade-off between performance and serializability.

Phase 1: Change role of the target to equal. In the first phase, tar-
get B’s role is first changed to equal mode for the switch X. Initial
master A initiates this phase by sending a start migration message
to B using a proprietary message on the controller-to-controller
channel. B sends Role-Request message to the switch inform-
ing that it is an equal. After B receives a Role-Reply message
from the switch, it informs the initial master A that its role change
is completed. After B changes its role to equal, it receives control
messages (e.g., Packet-In) from the switch, but ignores them and
does not respond.

Phase 2: Insert and remove a dummy flow. To determine an ex-
act instant for the migration, A sends a dummy (but well-known)
Flow-Mod command to X to add a new flow table entry that does
not match any incoming packet. Then, it sends another Flow-Mod
command to delete this flow table entry; in response, the switch
sends a Flow-Removed message to both controllers since B is in the
equal mode. This Flow-Removed event signals a handoff of switch
X from A to B, and henceforth, only B will process all messages
transmitted by switch. Here, our assumption that both controllers
in equal mode receive messages from the switch in the same order
is needed to guarantee the safety property. An additional barrier
message is required after the insertion of the dummy flow and be-
fore the dummy flow is deleted to prevent any chance of processing
the delete message before the insert.

Although B processes all messages after the Flow-Removed mes-
sage, it does not do so immediately. It caches all the messages after
the Flow-Removed message and begins processing them in the next
phase. This is needed to guarantee the serializability property. Pro-
cessing of messages from the north-bound interface can continue
uninterrupted.

Phase 3: Flush pending requests with a barrier. Now, B has
taken over responsibility of switch X, but A has not detached from
X yet. However, it cannot just detach immediately from the switch
since there may be pending requests at A that arrived before the
Flow-Removed message, for which A is still the owner. Controller
A processes all messages that arrived before Flow-Removed and
transmits their responses. Then, it transmits a Barrier-Request
and waits for the Barrier-Reply. Receiving a Barrier-Reply
from switch X indicates that X has finished processing all messages
that it received before the Barrier-Request messages. So, only
after receiving the Barrier-Reply message, controller A signals
“end migration” to the final master B. The “end migration” mes-



sage is a signal to B that A has finished processing all its messages
and committed them to the switch. Once B receives the “end mi-
gration” message, it processes all the cached messages in the order
that they were received. Note that delay in end migration message
can potentially cause message processing latency at B. This delay
can be avoided if we do not need to guarantee serializability. In
that case B can start processing Packet-In messages right after
receiving Flow-Removed.

Phase 4: Make target controller final master. Here, A would
have already detached from X and has signaled to B to become the
new master, which it does by by sending aRole-Request message
to the switch. It also updates the distributed data store to indicate
this. The switch sets A to slave when it receives the Role-Request
message from the final master B after which it processes all mes-
sages from the switch.

Performance-Serializability Trade-off. Buffering messages from
the switch at the end of phase 2 is needed to guarantee serializ-
ability. It ensures that B begins processing messages only after
A has completed processing messages before the Flow-Removed
message. The duration for buffering messages will depend on the
network latencies, message loss ratio, controller processing times,
etc. In our experiments, we observed that messages were never
buffered for more than 50msec. However, the worst case will de-
pend on many network characteristics and may be larger. While
buffering is needed to guarantee serializability, it has two undesir-
able side-effects. First, the controller will be unable to respond to
events from the switch while messages are being buffered. Sec-
ond, buffered messages will be processed late and may be irrel-
evant by the time they are processed. So, the network operator
should choose between two configurations of the migration proto-
col depending on network characteristics and application require-
ments. The "consistency configuration” buffers messages as de-
scribed above and provides all three guarantees. The "performance
configuration” does not buffer messages. It does not provide seri-
alizability but responds faster to switch events during migration.

3.3 Application State Migration

Safety, liveness and serializability guarantees of the migration
protocol simplify controller application changes to support switch
migration. The three guarantees together ensure that applications
do not miss any asynchronous events and do not have to check for
duplicate or reordered asynchronous messages from the switch be-
fore processing them. We describe the modifications to the applica-
tions and their interface with the core controller module below. We
have implemented them for the routing applications in ElastiCon.

We added two methods to the interface between the core con-
troller module and each application module. The first method,
named “switch_emigrate”, is invoked at the initial master controller
(controller A in the above example). The core controller mod-
ule invokes this method for each application after it has finished
processing all messages before the Flow-Removed message from
the switch. The method returns after the application has flushed
all switch-specific state to the distributed data store. Applications
also stop any switch-specific execution (like timers). The con-
troller sends the “end migration” message only after all applica-
tions execute their “switch_emigrate” method. The second method,
“switch_immigrate”, is invoked at the target master controller (con-
troller B in the above example) for each application. It is invoked
after the controller receives the “end migration” message. Each ap-
plication reads switch-specific state from the distributed data store
to populate local data structures and starts switch-specific execu-
tion. The distributed data store should guarantee that the controller
reads the state written in the “switch_emigrate” method earlier. The
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Figure 3: Load adaptation in ElastiCon.

controller starts processing cached asynchronous messages after all
applications have executed their “switch_immigrate” methods.

State-transfer between applications can also be performed over
TCP connections between applications instead of using the dis-
tributed data store. The above design simplified our implementa-
tion since we reused the interface between the application and the
distributed data store. Using this disruption-free migration proto-
col as a basic primitive, we now look at load adaptation aspects of
ElastiCon.

3.4 Load Adaptation

There are three key operations we envision for load adaptation
in ElastiCon. If the aggregate traffic load is greater (smaller) than
aggregate controller capacity, we need to scale up (down) the con-
troller pool. In addition, we need to periodically load balance the
controllers by migrating switches to newer controllers to adapt to
traffic load imbalances. We show our basic approach to achieve this
in Figure 3. It consists of three steps:

e Periodically collect load measurements at each controller node.

o Determine if the current number of controller nodes is sufficient
to handle the current load. If not, add or remove controller
nodes. In addition, if any controller is getting overloaded, but
aggregate load is within the capacity, we need to trigger load
balancing actions.

o Finally, adjust the switch to controller mapping by adding or
removing the controllers and triggering switch migrations as

needed.
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3.4.1 Load Measurement

The most direct way to measure the load on a controller is by
sampling response time of the controller at the switches. This re-
sponse time will include both computation and network latency.
However, switches may not support response time measurements,
since that requires maintaining some amount of extra state at the
switches that may or may not be feasible. Since the controller
is more programmable, ElastiCon maintains a load measurement
module on each controller to periodically report the CPU utiliza-
tion and network I/O rates at the controller. Our experiments show
that the CPU is typically the throughput bottleneck and CPU load is
roughly in proportion to the message rate (see Figure 4). The mod-
ule also reports the average message arrival rate from each switch
connected to the controller. This aids the load balancer in first dis-
secting the contribution of each switch to the overall CPU utiliza-
tion, and helps making optimal switch to controller mapping de-
cisions. We assume that the fraction of controller resources used
by a switch is proportional to its fraction of the total messages re-
ceived at the controller, which is typically true due to the almost
linear relationship between throughput and messages. The load
measurement module averages load estimates over small time in-
tervals (we use three seconds) to avoid triggering switch migrations
due to short-term load spikes.

Algorithm 1 Load Adaptation Algorithm

while True do
GET_INPUTS()
migration_set « DOREBALANCING()
if migration_set == NULL then
if DORESIZING() then
if CHECKRESIZING() then
migration_set < DOREBALANCING()
else
REVERTRESIZING()
end if
end if
end if
EXECUTE_POWER_ON_CONTROLLER()
EXECUTE_MIGRATIONS (migration_set)
EXECUTE_POWER_OFF_CONTROLLER()
SLEEP(3)
end while

3.4.2 Adaptation Decision Computation

The load adaptation algorithm determines if the current distributed
controller pool is sufficient to handle the current network load.
It sets a high and low thresholds to determine whether the dis-
tributed controller needs to be scaled up or down. Difference be-
tween these thresholds should be large enough to prevent frequent
scale changes. Then, the algorithm finds an optimal switch to con-
troller mapping constrained by the controller capacity while min-
imizing the number of switch migrations. Some CPU cycles and
network bandwidth should also be reserved for switches connected
to a controller in slave mode. Switches in slave mode impose very
little load on the controller typically, but some headroom should be
reserved to allow switch migrations.

While one can formulate and solve an optimization problem (e.g.,
linear program) that can generate an optimal assignment of switch-
to-controller mappings, it is not clear such formulations are use-
ful for our setting in practice. First, optimal balancing is not the
primary objective as much as performance (e.g., in the form of re-
sponse time). Usually, as long as a controller is not too overloaded,
there is not much performance difference between different CPU
utilization values. For example, 10% and 20% CPU utilization re-

sults in almost similar controller response time. Thus, fine-grained
optimization is not critical in practice. Second, optimal balanc-
ing may result in too many migrations that is not desirable. Of
course, one can factor this in the cost function, but then it requires
another (artificial) weighting of these two functions, which then be-
comes somewhat arbitrary. Finally, optimization problems are also
computationally intensive and since the traffic changes quickly, the
benefits of the optimized switch-controller mapping are short-lived.
So, a computationally light-weight algorithm that can be run fre-
quently is likely to have at least similar if not better performance
than optimization. Perhaps, this is the main reason why distributed
resource management (DRM) algorithms used in real world for
load balancing cluster workloads by migrating virtual machines
(VMs) do not solve any such optimization problems and rely on
a more simpler feedback loop [11]. We adopt a similar approach in
our setting.

Our load-adaptation decision process proceeds in two phases,
as shown in Algorithm 1. First, during the rebalancing step the
load adaptation module evenly distributes the current load across
all available controllers. After rebalancing, if the load on one or
more controllers exceeds the upper (or lower) threshold, the load
adaptation module grows (or shrinks) the controller pool.

Input to the Algorithm. A load adaptation module within Elasti-
Con periodically receives inputs from the load measurement mod-
ule on each controller. The input contains the total CPU usage by
the controller process in MHz. It also contains a count of the num-
ber of packets received from each switch of which that controller
is the master. The packet count is used to estimate the fraction of
the load on the controller due to a particular switch. The load adap-
tation module stores a moving window of the past inputs for each
controller. We define utilization of a controller as the sum of the
mean and standard deviation of CPU usage over the stored values
for that controller. The rebalancing and resizing algorithms never
use instantaneous CPU load. Instead they use CPU utilization to
ensure that they always leave some headroom for temporal spikes
in instantaneous CPU load. Also, the amount of headroom at a
controller will be correlated to the variation in CPU load for that
controller.

Output of the Algorithm. After processing the inputs, the load
adaptation module may perform one or more of the following ac-
tions: powering off a controller, powering on a controller, or mi-
grating a switch from one controller to another.

Main Loop of the Algorithm. First, the load adaptation mod-
ule receives the inputs from all controllers and augments them to
its stored state. All functions except the EXECUTE_* functions
only modify this stored state and they do not affect the state of
the controllers. After that, the EXECUTE_* functions determine
the changes to the stored state and send migration and power on/off
commands to the appropriate controllers.

There are two main subroutines in the rebalancing algorithm:
DOREBALANCING and DORESIZING. DOREBALANCING distributes
the current load evenly among the controllers. DORESIZING adds
or removes controllers accordingly to the current load. DORE-
SIZING is invoked after DOREBALANCING since resizing the con-
troller pool is a more intrusive operation than rebalancing the con-
troller load, and hence should be avoided when possible. Although
one can estimate average load per controller without actually doing
rebalancing and then determine whether resizing is needed or not,
this often suffers from estimation errors.

If the first invocation of DOREBALANCING generates any migra-
tions, we execute those migrations and iterate over the main loop
again after 3 seconds. If there are no migrations (indicating that the



controllers are evenly loaded), ElastiCon generates resizing (i.e.,
controller power on/off) decisions by invoking DORESIZING. The
power off decision needs to be verified to ensure that the switches
connected to the powered off controller can be redistributed among
the remaining controllers without overloading any one of them.
This is done in the CHECKRESIZING function. This function uses
a simple first-fit algorithm to redistribute the switches. While other
more sophisticated functions can be used, our experience indicates
first-fit is quite effective most of the time. If this function fails,
the (stored) network state is reverted. Otherwise, ElastiCon calls
DOREBALANCING to evenly distribute the switch load. Finally,
the EXECUTE_* functions implement the state changes made to the
network by the previous function calls. Since a migration changes
the load of two controllers, all stored inputs for the controllers in-
volved in a migration are discarded. The main loop is executed
every 3 seconds to allow for decisions from the previous iteration
to take effect.

Algorithm 2 The rebalancing algorithm

procedure DOREBALANCING()
migration_set «<— NULL
while True do
best_migration < GET_BEST_MIGRATION()
if best_migration.std_dev_improvement
THRESHOLD then
migration_set.INSERT (best_migration)
else
return migration_set
end if
end while
end procedure

Y

Rebalancing. The rebalancing algorithm, described in Algorithm 2,
tries to balance the average utilization of all controllers. We use the
standard deviation of utilization across all the controllers as a bal-
ancing metric. In each iteration, it calls the GET_BEST_MIGRATION
function to identify the migration that leads to the most reduc-
tion in standard deviation of utilization across controllers. The
GET_BEST_MIGRATION function tries every possible migration in
the network and estimates the standard deviation of utilization for
each scenario. It returns the migration which has the smallest esti-
mated standard deviation. To estimate the standard deviation, this
function needs to know the load imposed by every switch on its
master controller. Within each scenario, after a hypothetical mi-
gration, the function calculates the utilization of each controller by
adding the fractional utilizations due to the switches connected to it.
It then finds the standard deviation across the utilization of all the
controllers. If reduction in standard deviation by the best migra-
tion it finds exceeds the minimum reduction threshold, ElastiCon
adds that migration to the set of migrations. If no such migration is
found or the best migration does not lead to sufficient reduction in
standard deviation, it exits.

Resizing. The resizing algorithm, shown in Algorithm 3, tries to
keep the utilization of every controller between two preset high and
low thresholds. Each invocation of the resizing algorithm generates
either a power on, or power off, or no decision at all. The resizing
algorithm is conservative in generating decisions to prevent oscilla-
tions. Also, it is more aggressive in power on decisions than power
off. This is because when the utilization exceeds the high threshold,
the network performance may suffer unless additional controllers
are put in place quickly. However, when the utilization goes below
the low threshold, network performance does not suffer. Removing
controllers only consolidates the workload over fewer controllers
sufficient to handle existing traffic conditions, mainly for power

Algorithm 3 The resizing algorithm

procedure DORESIZING()
for all c in controller_list do
if cutil > HIGH_UTIL_THRESH then
SWITCH_ON_CONTROLLER()
return True
end if
end for
counter «— 0
for all ¢ in controller_list do
if cutil < LOW_UTIL_THRESH then
counter «— counter + 1
end if
end for
if counter > 2 then
SWITCH_OFF_CONTROLLER()
return True
else
return False
end if
end procedure

and other secondary concerns than network performance. Thus,
we generate a power on decision when any controller exceeds the
high threshold while requiring at least two controllers to fall below
the low threshold for generating a power off decision. Trigger-
ing a decision when just one or two controllers cross the threshold
might seem like we aggressively add or remove controller. But, our
decisions are quite conservative because the resizing algorithm is
executed only when the load is evenly distributed across all con-
trollers. So, if a controller crosses the threshold, it indicates that all
controllers are close to the threshold.

3.4.3 Extending Load Adaptation Algorithms

The load adaptation algorithms described above can be easily
extended to satisfy additional requirements or constraints. Here we
describe two such potential extensions to show the broad applica-
bility and flexibility of the algorithm.

Controller Location. To reduce control plane latency, it may be
better to assign a switch to a closeby controller. We can accommo-
date this requirement in ElastiCon by contraining migrations and
controller additions and removals. To do so, in every iteration of the
rebalancing algorithm (Algorithm 2), we consider only migrations
to controllers close to the switch. This distance can be estimated
based on topology information or controller to switch latency mea-
surements. If the operator wants to set switch-controller mapping
based on physical distance (in number of hops), he/she can use the
network topology. The operator should use latency measurements
when he/she wants to set switch-controller mapping based on log-
ical distance (in milliseconds). Similarly, in the resizing algorithm
(Algorithm 3), the new controllers added should be close to the
overloaded controllers so that switches can migrate away from the
overloaded controller. The first-fit algorithm used in CHECKRE-
SIZING function should also be modified such that a switch can
only “fit” in a closeby controller.

Switch Grouping. Assigning neighboring switches to the same
controller may reduce inter-controller communication during flow
setup and hence improve control plane efficiency. Graph partition-
ing algorithms can be used to partition the network into switch
groups; and the result can be fed into ElastiCon. ElastiCon can
be modified to treat each group as a single entity during migration
and resizing, so that the switches of the same group are always
controlled by the same controller except for short intervals during
migration. The load measurements module should be modified to
combine load readings of switches of a group and present it as a
single entity to the load adaptation algorithm. When the rebalanc-



ing algorithm determines that the entity needs to be migrated, the
EXECUTE_* functions should migrate all the switches of the group.

3.4.4 Adaptation Action

Following the adaptation decision, adaptation actions are exe-
cuted to transform the network configuration (i.e., switch to con-
troller mapping). A switch is migrated to a former slave by follow-
ing the steps in our 4-phase migration protocol described before.
In case of controller addition or removal, one or more switches
may need to be reassigned to new master controllers that they are
not currently connected to. This can be done by replacing one of
the existing slave controllers’ IP address of the switch with that of
the new controller using the edit-config operation of OpenFlow
Management and Configuration Protocol [1]. Once the connection
between the new controller and the switch is established, we then
invoke the migration procedure to swap the old master with the new
slave controller. If a switch does not support updating controller IP
addresses at runtime, other workarounds based on controller IP ad-
dress virtualization are also possible (discussed in Section 4).

4. IMPLEMENTATION

In this section, we present further details on how we implement
ElastiCon by modifying and adding components to the centralized
Floodlight controller.

Distributed Data Store. We use Hazelcast to implement the dis-
tributed data store. Although other NoSql databases may have also
worked here, we find Hazelcast a good choice due to its perfor-
mance and flexibility. Hazelcast provides strong consistency, trans-
action support, and event notifications. Its in-memory data storage
and distributed architecture ensures both low latency data access
and high availability. Persistent data can be configured to write to
disk. It is written in Java, which makes it easy for integration with
Floodlight. We include the Hazelcast libraries in the Floodlight
executable. The first Hazelcast node forms a new distributed data
store. Subsequently, each Hazelcast node is configured with the IP
addresses and ports of several peers. At least one of the peers needs
to be active for the new node to join the distributed data store.

Controller. When a controller boots up, it publishes its own local
data and retrieves data of other controllers by accessing Hazelcast.
One such data is the IP address and TCP port of each controller
needed for inter-controller communication. This allows the con-
trollers to set up direct TCP connections with each other, so that
they can invoke each other to set up paths for flows.

The switch to master controller mapping is also stored in Hazel-
cast using the unique switch datapath-id as the key. We have mod-
ified the core controller in Floodlight to allow a controller to act in
different roles for different switches. The initial switch to master
mapping can be determined in one of two ways. In the first method,
the load adapter module running in the controller (described later)
reads in the mapping from a configuration file and stores the infor-
mation in Hazelcast. We also implement an ad hoc strategy by let-
ting the controllers try to acquire a lock in Hazelcast when a switch
connects to them. Only one controller can succeed in acquiring the
lock; it then declares itself as the master for the switch.

Load Adaptation Module. The load measurement module is in-
tegrated into the controller. We use SIGAR API [19] to retrieve
the CPU usage of the controller process. We enhanced the REST
API of the controller to include CPU usage queries. The adapta-
tion decision algorithm run on a separate host. It communicates
with all controllers over the REST API. It requires the REST port
and IP address of one of the controllers. Using that, it queries the
controller for the IP address and REST port of all other controllers

and switch-to-controller mappings of all switches in the network.
In each iteration, the program queries the CPU usage information
from each controller and sends migration requests to the master
controller of a switch when the switch needs to be migrated.

Adding and Removing Controllers. Migration of a switch to a
newly connected controller is done in two steps. First, we replace
the IP address and TCP port number of one of the slave controllers
of the switch with those of the new controller. This can be done by
using the edit-config operation of OpenFlow Management and
Configuration Protocol [1]. Once the connection between the new
controller and the switch is established, we then invoke the migra-
tion procedure to swap the old master with the new slave controller.
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If a switch does not support updating controller IP addresses
at runtime, we can use the following procedure as a workaround,
which is suitable when the control plane is configured to use the
same layer 2 network (e.g., on the same VLAN). All switches are
configured to use a set of virtual controller IP addresses, which will
be mapped to the real controller IP addresses at runtime according
to load condition. Such mapping can be realized by using ARP and
Network Address Translation (NAT), as shown in Figure 5. When
the virtual controller IP address ¢p,, for a switch is mapped to con-
troller C’s IP address ip., we use gratuitous ARP to bind the MAC
address of the controller C' with ip,, so that the packets to ip,, can
reach controller C'. At controller C', we do NAT from ip, to ip.,
so that the packets can be handled by the controller transparently.

Figure 6 shows how such binding can be changed when we need
to replace controller C' with controller C’. We first send a TCP
reset message from C' to disconnect the switch from the controller,
and then use gratuitous ARP to bind MAC address of C’ with ip,,.
Note that connection reset to C'is only done when C' is not a master
controller to avoid disruption in normal switch operation. When the
switch tries to reconnect to ¢p,,, the message will reach C’ instead
of C. We then do a NAT from ip,, to ip. at controller C’ as before.
Note that if the gratuitous ARP does not reach the switch before
the reconnection request is sent, controller C' simply rejects the
reconnection request and the switch ultimately gets connected to
controller C’.



S. EVALUATION

In this section, we evaluate the performance of our ElastiCon pro-
totype using an emulated SDN-based data center network testbed.
We first describe the enhanced Mininet testbed that we used to carry
out the evaluation, and then present our experimental results.

5.1 Enhanced Mininet Testbed

Our experimental testbed is built on top of Mininet [14], which
emulates a network of Open vSwitches [18]. Open vSwitch is a
software-based virtual Openflow switch. It implements the data
plane in kernel and the control plane as a user space process. Mininet
has been widely used to demonstrate the functionalities, but not the
performance, of a controller because of the overhead of emulating
data flows. First, actual packets need to be exchanged between the
vSwitch instances to emulate packet flows. Second, a flow arrival
resulting in sending a Packet-1In to the controller incurs kernel to
user space context switch overhead in the Open vSwitch. From our
initial experiments we observe that these overheads significantly
reduce the maximum flow arrival rate that Mininet can emulate,
which in turn slows down the control plane traffic generation ca-
pability of the testbed. Note that for the evaluation of ElastiCon,
we are primarily concerned with the control plane traffic load and
need not emulate the high overhead data plane. We achieve this
by modifying Open vSwitch to inject Packet-In messages to the
controller without actually transmitting packets on the data plane.
We also log and drop Flow-Mod messages to avoid the additional
overhead of inserting them in the flow table. Although we do not
use the data plane during our experiments, we do not disable it.
So, the controller generated messages (like LLDPs, ARPs) are still
transmitted on the emulated network.

In order to experiment with larger networks we deployed multi-
ple hosts to emulate the testbed. We modified Mininet to run the
Open vSwitch instances on different hosts. We created GRE tun-
nels between the hosts running Open vSwitch instances to emulate
links of the data center network. Since we do not actually transmit
packets in the emulated network, the latency/bandwidth character-
istics of these GRE tunnels do not impact our results. They are
used only to transmit link-discovery messages to enable the con-
trollers to construct a network topology. To isolate the switch to
controller traffic from the emulated data plane of the network, we
run Open vSwitch on hosts with two Ethernet ports. One port of
each host is connected to a gigabit Ethernet switch and is used to
carry the emulated data plane traffic. The other port of each host is
connected to the hosts that run the controller. We isolated the inter-
controller traffic from the controller-switch traffic too by running
the controller on dual-port hosts.

5.2 Experimental Results

We report on the performance of ElastiCon using the routing ap-
plication. All experiments are conducted on k=4 fat tree emulated
on the testbed. We use 4 hosts to emulate the entire network. Each
host emulates a pod and a core switch. Before starting the exper-
iment, the emulated end hosts ping each other so that the routing
application can learn the location of all end hosts in the emulated
network.

Throughput. We send 10,000 back-to-back Packet-In messages
and plot the throughput of ElastiCon with varying number of con-
troller nodes (Figure 7(a)). We repeat the experiment while pinning
the controllers to two cores of the quad-core server. We observe two
trends in the results. First, adding controller nodes increases the
throughput almost linearly. This is because there is no data shar-
ing between controllers while responding to Packet-In messages.

Second, the throughput reduces when we restrict the controllers to
two cores indicating that CPU is indeed the bottleneck.

Response time. We plot the response time behavior for Packet-In
messages with changing flow arrival rate (see Figure 7(b)). We re-
peat the experiment while changing the number of controller nodes.
As expected, we observe that response time increases marginally
up to a certain point. Once the packet generation rate exceeds the
capacity of the processor, queuing causes response time to shoot
up. This point is reached at a higher packet-generation rate when
ElastiCon has more nodes.
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Figure 8: Migration time

Migration time. The time taken to migrate a switch is critical for
the load balancing protocol to work efficiently. We define migration
time for controller A as the time between sending the “start migra-
tion” message and “end migration” message. We define migration
time for controller B as the time between receiving the “start mi-
gration” and sending the Role-Request to change to master. In
a network with 3 controllers, we perform 200 migrations and ob-
serve the migration time for each migration at both controllers. We
also observe the time for which controller B caches messages from
the switch. We plot the 95" percentile of the migration and caching
times in Figure 8. The plot shows that the migration time is minimal
(few tens of milliseconds) and increases marginally as the load on
the controller increases. The caching time is even smaller (around
5ms). This keeps memory usage of the message cache small (few
KBs).

Automatic rebalancing under hot-spot traffic. We use a N=4
fat tree to evaluate the effect of the automatic load balancing algo-
rithm. Three of the four pods of the fat tree are evenly loaded, while
the flow arrival rate in the fourth pod is higher than that in the other
three. We configure ElastiCon with four controllers, one assigned to
all the switches of each pod. The master controller of the fourth pod
is obviously more heavily loaded than the other three. Figure 9(a)
shows the 95" percentile of the response time of all Packet-In
messages before and after rebalancing. The Packet-In message
rate in the fourth pod is varied on the X-axis. We truncate the y-axis
at 20ms, so a bar at 20ms is actually much higher.

We observe that as traffic gets more skewed (i.e., the Packet-In
rate in the fourth pod increases), we see a larger benefit by doing
rebalancing corresponding to the 65-75% bars. At 70-80% hot-
spot, the system is unstable. The 95" percentile can be arbitrarily
high depending on the amount of time the experiment is run before
rebalancing, since the one of the controllers is overloaded (i.e., the
Packet-In rate exceeds the saturation throughput). At 80% hot-
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Figure 9: Benefit of automatic rebalancing. We truncate the y-axis at 20ms. So a bar at 20ms is actually much higher.

spot, rebalancing by itself does not help as seen by the blue bar
exceeding 20ms since there is no way to fit the workload among
existing controllers.

Automatic rebalancing under Pareto distribution. We also eval-
uate the benefit of the rebalancing algorithm in the case where mul-
tiple hot spots may appear randomly following a Pareto distribu-
tion. As before, we use a N=4 fat tree with 4 controllers. The
network generates 24,000 Packet-In messages per second. The
message arrival rate is distributed across all the switches in the net-
work using a Pareto distribution. We repeat the traffic pattern with
6 different seeds. We start with a random assignment of switches to
controllers and apply the rebalancing algorithm. Figure 9(b) shows
the 95™ percentile response time with random assignment and with
rebalancing.

Since a Pareto distribution is highly skewed, the improvement
varies widely depending on the seed. If the distribution generated
by a seed is more skewed, rebalancing is likely to deliver better re-
sponse times over a random switch to controller assignment. But, if
the Pareto distribution evenly distributes traffic across switches (see

seeds #2 and #5), random assignment does almost as well as rebal-
ancing. In the Figure 9(b), we can observe that for all cases, re-
balancing at least ensures that there is no controller that is severely
overloaded while at least in four cases, random load balancing led
to significant overload as evidenced by the high red bar.

Effect of resizing. We demonstrate how the resizing algorithm
adapts the controllers as the number of Packet-In messages in-
creases and decreases. We begin with a network with 2 controllers
and an aggregate Packet-In rate of 8,000 packets per second. We
increase the Packet-In rate in steps of 1,000 packets per second
every 3 minutes until it reaches 12,000 packets per second. We
then reduce it in steps of 1,000 packets per second every 3 minutes
until it comes down to 6,000 packets per second. At all times, the
Packet-In messages are equally distributed across switches, just
for simplicity. We observe 95" percentile of the response time at
each minute for the duration of the experiment. We also note the
times at which ElastiCon adds and removes controllers to adapt to
changes in load. The results are shown in Figure 10.
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Figure 10: Growing and shrinking ElastiCon

We observe that ElastiCon adds a controller at the 6™ and 10™
minute of the experiment as the Packet-In rate rises. It removes
controllers at the 22" and 29™ minute as the traffic falls. Also, we
observe that the response time remains around 2ms for the entire
duration of the experiment although the Packet-In rate rises and
falls. Also, ElastiCon adds the controllers at 10,000 and 11,000
Packet-In messages per second and removes them at 9,000 and
7,000 Packet-In messages per second. As described earlier, this
is because ElastiCon aggressively adds controllers and conserva-
tively removes them.

6. CONCLUSION AND FUTURE WORK

In this paper, we presented our design of ElastiCon, a distributed
elastic SDN controller. We designed and implemented algorithms
for switch migration, controller load balancing and elasticity which
form the core of the controller. We enhanced Mininet and used it
to demonstrate the efficacy of those algorithms. Our current de-
sign does not address issues caused by failures, although we be-
lieve fault tolerance mechanisms can easily fit into this architec-
ture. This may require running three or more controllers in equal
role for each switch and using a consensus protocol between them
to ensure there is always at least one master even if the new mas-
ter crashes. We also plan to study the impact of application data
sharing patterns on switch migration and elasticity. In addition, we
plan to consider other factors like controller placement and con-
troller performance isolation in a multi-tenant data center.
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