How to Run Spark Application

Junghoon Kang

Contents
1 Intro 2
2 How to Install Spark on a Local Machine? 2
2.1 On Ubuntu 14.04 e 2
3 How to Run Spark Application on a Local Machine? 3
3.1 Write Application Code e 3
3.2 Compile Application Code 3
3.3 Run Application e 4
4 Details about Submitting Applications 5
4.1 Bundling Application’s Dependencies 5
4.2 Launching Applications with spark-submit)
4.3 Master URLs o e 6
5 How to Run Spark Application on EC2? 7
5.1 Before You Start 7
5.2 Launch a Cluster e 7
5.3 Running Applications 8
5.3.1 Write Application Code 8
5.3.2 Compile Application Code 9
5.3.3 Deploy Code e 9
5.3.4 Run Application 9
5.3.5 Check Output e 10
5.3.6 Uploading Input Data to EC2 Instance 10
5.4 Terminating a Cluster L 10
6 References 11

1 Intro

This tutorial simply concatenates the parts of documents from the following links:

e Quick Start
http://spark.apache.org/docs/latest/quick-start.html

e Submitting Applications
http://spark.apache.org/docs/1.4.1/submitting-applications.html

e Cluster Mode Overview
http://spark.apache.org/docs/1.4.1/cluster-overview.html

e Running Spark on EC2
http://spark.apache.org/docs/1.4.1/ec2-scripts.html

2 How to Install Spark on a Local Machine?

2.1 On Ubuntu 14.04
1. Install the latest version of Java Development Kit.

2. Install the latest version of Scala.

3. Download and unzip spark-1.4.1-bin-hadoop2.6.tgz, which is prebuilt Spark for Hadoop
2.6 or later.

4. Try running Spark interactive shell, inside the spark-1.4.1-bin-hadoop2.6 directory, by
typing:
$./bin/spark-shell

3 How to Run Spark Application on a Local Machine?

3.1 Write Application Code

Here is an example application code that generates 4 million random alphanumeric string
with length 5 and persists them into outputDir.

/* GenerateNames.scala */

import org.apache.spark.SparkContext
import org.apache.spark.SparkConf
import scala.util.Random

object GenerateNames {
val outputDir = "/home/jung/sparkapp/output/part"

def main(args: Array[Stringl) {
val conf = new SparkConf ()
.setMaster("local[3]")
.setAppName ("GenerateNames")

val sc = new SparkContext(conf)

for (partition <- 0 to 3) {
val data = Seq.fill(1000000) (Random.alphanumeric.take(5) .mkString)
sc.parallelize(data, 1).saveAsTextFile(outputDir + "_" + partition)

3.2 Compile Application Code

Our application depends on the Spark API, so we’ll also include an sbt configuration file,
build.sbt, which describes about the dependency. Also, this file adds a repository that
Spark API depends on:

/* build.sbt */

name := "SparkApp"
version := "O0.1"
scalaVersion := "2.11.6"

libraryDependencies += "org.apache.spark" %% "spark-core" % "1.4.1"

For sbt to work correctly, we will need to layout GenerateNames.scala and build.sbt files
according to the typical directory structure. Your directory layout should look something like
below when you type find command inside your application directory.

Inside /home/jung/sparkapp/ directory:
$ find .

./build.sbt

./src

./src/main

./src/main/scala
./src/main/scala/GenerateNames.scala

Once that is in place, we can create a JAR package containing the application’s code.

Package a jar containing your application.
Inside /home/jung/sparkapp/ directory:
$ sbt package

[info] Packaging {..}/{..}/target/scala-2.11/sparkapp_2.11-0.1.jar
[info] Done packaging.
[success] Total time:

3.3 Run Application

Finally, we can run the application using:
/home/jung/spark-1.4.1-bin-hadoop2.6/bin/spark-submit script.

$ /home/jung/spark-1.4.1-bin-hadoop2.6/bin/spark-submit \
--class GenerateNames
/home/ jung/sparkapp/target/scala-2.11/sparkapp_2.11-0.1. jar

Inside the /home/jung/output/ directory, we can see that there are 4 directories
part_0 part_1 part_2 part_3

Each directory contains:

part_00000 _SUCCESS

And each part_00000 contains 1 million names.

4 Details about Submitting Applications

In the previous section, we showed you how to run a simple Spark application on a local
machine. In this section, we will explain about the details of submitting a Spark application.

4.1 Bundling Application’s Dependencies

In the above example, we wrote build.sbt file and used sbt package command to create a
assembly jar (sparkapp_2.11-0.1.jar in our example). Why do we need this process?

The reason is because if your code (GenerateNames.scala in our example) depends on other
projects, such as Spark, you will need to package them alongside your application in order to
distribute the code to a Spark cluster (which is our final goal of this tutorial).

4.2 Launching Applications with spark-submit

Once you have an assembled jar, you can call the spark-submit script to launch the
application. This script takes care of setting up the classpath with Spark and its dependencies,
and can support different cluster managers and deploy modes that Spark supports:

$ /home/jung/spark-1.4.1-bin-hadoop2.6/bin/spark-submit \
—--class MAIN_CLASS \
--master MASTER_URL \
--conf KEY=VALUE \
other options
APPLICATION_JAR \
[APPLICATION_ARGUMENTS]

Some of the commonly used options are:
e ——class: The entry point for your application.
e ——master: The master URL for the cluster.

e ——deploy-mode: Whether to deploy your driver on the worker nodes (cluster) or
locally as an external client (client) (default: client).

— —-deploy-mode client

— —-deploy-mode cluster

e ——total-executor-cores: The total number of cores worker nodes can have.
— --total-executor-cores 3

e —-executor-memory: The size of memory each worker node can have.

— -—executor-memory 512m

— ——executor—memory 2g
e ——conf: Configuration.

— spark.executor.extraJavaOptions=-XX:+PrintGCDetails

— spark.executor.extraJavaOptions=-XX+:PrintGCTimeStamps

— spark.executor.extraJavaOptions=-XX:+HeapDumpOnOutOfMemoryError

e APPLICATION_JAR: Path to a bundled jar including your application and all
dependencies. The URL must be globally visible inside of your cluster.

e APPLICATION_ARGUMETNS: Arguments passed to the main method of your main class, if

any.

4.3 Master URLs

The master URL passed to Spark can be in one of the following formats:
e local: Run Spark locally with one worker thread.

e local[K]: Run Spark locally with K worker threads (ideally, set this to the number of
cores on your machines).

e local[*]: Run Spark locally with as many worker threads as logical cores on your
machine.

e spark://HOST:PORT: Connect to the given Spark standalone cluster master. The port
must be whichever one you master is configured to use, which is 7077 by default.

5 How to Run Spark Application on EC2?

The spark-ec?2 script, located inside spark-1.4.1-bin-hadoop2.6/ec2/ directory on your
local machine, allows you to launch, manage, and shut down Spark clusters on Amazon EC2.
It automatically sets up Spark and HDF'S on the cluster for you.

5.1 Before You Start

EC2 Key Pair

Create an EC2 key pair so that you can SSH into a master or slave instances in a Spark
cluster later after you launch the cluster. This can be done through AWS console. When the
private key is downloaded to your local machine, set the permissions for the private key file to
400 and move the file to a safe location. For example:

$ sudo chmod 400 jung-keypair-useastl.pem
$ mv jung-keypair-useastl.pem ~/.ssh

AWS Access Keys

Create an AWS access keys from AWS console and set the environment variables
AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY to your Amagzon access key ID and secret
access key. For example, inside your ~/.bashrc file, add the lines below:

export AWS_ACCESS_KEY_ID=ABCDE1234567890
export AWS_SECRET_ACCESS_KEY=AaBbCcDdEe1234567890!@#$%~&* ()

5.2 Launch a Cluster

Here is an example of how you would launch a Spark cluster with 3 slave nodes and 1 master
node:

$ /home/jung/spark-1.4.1-bin-hadoop2.6/ec2/spark-ec2 \
—--key-pair=jung-keypair-useastl \
--identity-file=/home/jung/.ssh/jung-keypair-useastl.pem \
--region=us-east-1 \
--instance-type=m3.2xlarge \
--slaves=3 \
launch jung-ec2-useastl-mycluster

Run /home/jung/spark-1.4.1-bin-hadoop2.6/ec2/spark-ec2 --help to see more usage
options. Here are some of the options:

e ——slaves=SLAVES
specifies the number of slaves to launch (default: 1).

e —-key-pair=KEY_PAIR
specifies which key pair to use on instances.

e ——identity-file=IDENTITY_FILE
specifies the SSH private key file to use for logging into instances.

e ——instance-type=INSTANCE_TYPE
specifies the type of instance to launch (default: m1.large, which has 2 cores and 7.5
GB RAM).

e —-region=REGION
specifies an EC2 region to launch instances in. The region should be the same as the
region where you have created your EC2 key pair.

e ——zone=Z0NE
specifies an availability zone to launch instances in.

After you launch a Spark cluster, you can monitor the instances through AWS console or
http://<master-public-dns>:8080. The <master-public-dns> can be obtained from AWS
console as well.

5.3 Running Applications

5.3.1 Write Application Code

Let’s use the same application code that we have used in How to Run Spark Application
on a Local Machine section but with a small tweak.

/* GenerateNames.scala */

import org.apache.spark.SparkContext
import org.apache.spark.SparkConf
import scala.util.Random

object GenerateNames {

val
val
val
def

}

SPARK_MASTER = "spark://ec2-54-158-141-105.compute-1.amazonaws.com:7077"
HDFS = "hdfs://ec2-54-158-141-105. compute-1.amazonaws.com:9000"
outputDir = HDFS + "/output/part"
main(args: Array[String]) {
val conf = new SparkConf ()

.setMaster (SPARK_MASTER)

.setAppName ("GenerateNames")

val sc = new SparkContext (conf)
for (partition <- 0 to 3) {

val data = Seq.fil1(1000000) (Random.alphanumeric.take(5) .mkString)
sc.parallelize(data, 1).saveAsTextFile(outputDir + "_" + partition)

The only changes that I made here are:

SPARK_MASTER = "spark://ec2-54-1568-141-105. compute-1.amazonaws.com:7077"
HDFS = "hdfs://ec2-54-158-141-105. compute-1.amazonaws.com:9000"

where ec2-54-158-141-105. compute-1.amazonaws . com is the public DNS of the master
node, which could be found in the AWS console after you launch a cluster. And the HDFS is
the master node’s access point to HDFS, in which we will persist ouput.

5.3.2 Compile Application Code

On your local machine, inside the /home/jung/sparkapp/ directory, which contains
application source code, type: $ sbt package to create an uber JAR.

5.3.3 Deploy Code

Let’s deploy our application to our Spark cluster. First, we need to scp the JAR file we
created to the master instance.

$ scp -i /home/jung/.ssh/jung-keypair-useastl.pem \
sparkapp_2.11-0.1.jar \
ec2-user@ec2-54-158-141-105. compute-1.amazonaws.com: /home/ec2-user/

Then, ssh into the master instance.

$ ssh -i /home/jung/.ssh/jung-keypair-useastl.pem \
ec2-user@ec2-54-158-141-105.compute-1.amazonaws.com

If you want to see event logs after your application is finished, you need to modify the
/root/spark/conf/spark-defaults.conf file as below

add line
spark.eventlLog.enabled true

Then, disseminate the configuration file to worker nodes by typing:

$ sudo /root/spark-ec2/copy-dir /root/spark/conf

5.3.4 Run Application

Finally, we can run the application that we deployed on the cluster. Inside the master node,
type:

$ /root/spark/bin/spark-submit \
--class GenerateNames \
/home/ec2-user/sparkapp_2.11-0.1.jar

5.3.5 Check Output

Let’s check the output directory inside the HDFS.
$ sudo /root/ephemeral-hdfs/bin/hadoop fs -1ls /
This command will print out something like this:

Warning: $HADOOP_HOME is deprecated.

Found 1 items
drwxr-xr-x - root supergroup O 2015-03-09 06:24 /output

Let’s copy the directory into /home/ec2-user/

$ sudo /root/ephemeral-hdfs/bin/hadoop fs -get \
/output /home/ec2-user

Now you can view names that your application generated.
Also, here are some hdfs commands that you might find them useful:

removes all files in hdfs
$ sudo /root/ephemeral-hdfs/bin/hadoop fs -rmr /*

puts foo.txt into hdfs
$ sudo /root/ephemeral-hdfs/bin/hadoop fs -put \
/home/ec2-user/foo.txt /

retrieves the size of all data in hdfs
$ sudo /root/ephemeral-hdfs/bin/hadoop fs -du -s -h /

In addition to checking outputs in the HDFS, you can also view Spark’s web Ul on a browser
by giving the following address:

spark://ec2-54-158-141-105. compute-1.amazonaws.com:8080 , where
ec2-54-158-141-105. compute-1.amazonaws . com is the public DNS of the master node.
5.3.6 Uploading Input Data to EC2 Instance

If you have an input data and would like to upload it to your EC2 instance, you could use the
same way as we deployed our Spark application to the Spark cluster.

$ scp -i /home/jung/.ssh/jung-keypair-useastl.pem \
some_input_file.txt \
ec2-user@ec2-54-158-141-105. compute-1.amazonaws.com: /home/ec2-user/

5.4 Terminating a Cluster

To terminate the cluster, type:
$ /home/jung/spark-1.4.1-bin-hadoop2.6/ec2/spark-ec2 destroy CLUSTER_NAME

where CLUSTER_NAME is jung-ec2-useastl-mycluster for our example.

10

6 References

[1] http://spark.apache.org/docs/latest/quick-start.html
[2] http://spark.apache.org/docs/1.4.1/submitting-applications.html
[3] http://spark.apache.org/docs/1.4.1/cluster-overview.html

[4] http://spark.apache.org/docs/1.4.1/ec2-scripts.html

11

