
Page 1 of 4

CompSci 316 Fall 2015: Homework #3
100 points (8.75% of course grade) + 10 points extra credit
Assigned: Thursday, October 15
Due: Tuesday, November 3

This homework should be done in parts as soon as relevant topics are covered in lectures. If you wait until
the last minute, you might be overwhelmed.

For Problem 1, you will need to use Gradiance. Access Gradiance via the “Gradiance” link on the course
website. There is no need to turn in anything else for these problems; your scores will be tracked
automatically. For other problems, you will need to turn in the required files through WebSubmit; there is a
shortcut to it on the menu bar across the top of the course website. When submitting your work, make sure
you select the correct course and homework. Multiple submissions are okay, but please upload all required
files in each resubmission.

Problems 2, 3, and X1 should be completed on your course VM. Before you start, make sure you refresh your
VM, by logging into your VM and issuing the following command:
 /opt/dbcourse/sync.sh
While you may develop and debug your program for Problems 3 and X1 on your own computer, make sure it
is possible to compile and run your program on the course VM, because we will use the VM for grading.

Problem 1 (15 points)
Complete the Gradiance homework titled “Homework 3.1 (XML).”

Problem 2 (55 points)
Consider an XML document (from a project called XMark) modeling the data maintained by an Internet
auction site in /opt/dbcourse/examples/xmark/auction.xml. The main entities of interest are:
items, persons, open auctions, closed auctions, and categories.

• Item elements describe items that are for sale or already have been sold. Each item carries a unique
identifier and bears properties like payment method (credit card, money order, etc.), a reference to the
seller, a description, etc., all encoded as subelements. Each item belongs to a world region represented by
the item’s parent.

• Open auctions are auctions in progress. Their properties include the bid history (i.e., increases over time)
along with references to the bidders, a reference to the seller, a reference to the item being sold, etc.

• Closed auctions are auctions that are finished. Their properties include references to the seller and the
buyer, a reference to the respective item, the price, the quantity of items sold, etc.

• Persons are characterized by name, email address, phone number, mail address, profile of their interests,
a set of open auctions they watch, etc.

• Categories feature a name and a description; they are used to implement classification of items. A
category graph links categories into a network.

Page 2 of 4

The figure below roughly illustrates part of the document structure that may be relevant to the problem. For
the complete structure, refer to the file auction.dtd.

Please refer to the document “XML Tips” on the course Web site for instructions on running saxonb-
xquery, the Saxon XQuery processor. Write queries in XQuery to answer the following questions. Because
Saxon does not use any indexes and does not have a sophisticated optimizer, query performance may be
heavily influenced by the way you write your queries. If a particular query takes forever to run, consider
reordering loops and evaluating selections (filters) as early as possible. Note that you can add comments to
your queries by enclosing them in “(:” and “:)”.

For each question below, say (a), write your XQuery in a file named 2a.xq, and generate the output file
2a.xml by running
saxonb-xquery -s /opt/dbcourse/examples/xmark/auction.xml 2a.xq > 2a.xml

Turn in all your .xq and output .xml files.

(a) Find names of all items in “africa” region.
(b) Find names of all items that belong to “category2”.
(c) Find names of all persons whose address has zip code 27.
(d) Find all buyers who paid less than $10 in a closed auction.
(e) Find names of all persons who have bidden in an open auction for an item whose name contains

the string “cow”.
(f) Find names of all persons with address in “United States” who never bought anything in

closed auctions.
(g) For each open auction whose seller’s name is “Venkatavasu Takano”, print out the

following information:

site

regions people open_auctions closed_auctions

person

open_auction

closed_auction

name address

street

city country

zipcode

initial

date

time

bidder itemref seller

personref

increase

itemref

buyer seller

price

{africa,asia,...}

item

description

name incategory

Page 3 of 4

<open_auction id="...">
 <bidders total_number="...">
 <bidder_name>...</bidder_name>
 <bidder_name>...</bidder_name> ...
 </bidders>
</open_auction>

Problem 3 (30 points)
In /opt/dbcourse/assignments/hw3/ on your VM, you will find an XML file congress.xml
containing information about the current (114th) US Congress. Logically, the file consists of two sections:

• Each person element under congress/people stores information about a legislator, including
the role he or she serves in the Congress. The person is a current member of the House (or Senate) if
he or she has a role with type “rep” (or “sen”, respectively) and current equal to 1.

• Each committee element under congress/committees stores information about a committee.
It has a list of members, whose ids reference those of person elements in the first section; role
specifies the role of the member in the committee (e.g., chair or ranking member). Oftentimes a
committee can be divided into subcommittees. Each subcommittee element has its own list of
members, which should be a subset of the committee members. A legislator can serve on multiple
committees, and even multiple subcommittees under the same committee.

Your job is to produce an output XML file percom.xml, which presents information about legislators and
their committee assignments in a more concise and readable form. The output file should be structured as
follows, and conform to the DTD in /opt/dbcourse/assignments/hw3/percom.dtd.

• The root element is congress.
• congress has two child elements: house and senate, each listing its current legislators. See the

description of congress.xml above for how to determine who are current members of the two
chambers.

• Each legislator is represented as a person element, with a name attribute whose value is taken from
person/@name in congress.xml. Under person, list each committee that this legislator serves
in as a committee element. A committee element has a name attribute whose value is taken from
committee/@displayname in congress.xml; it also has a role attribute whose value is taken
from member/@role (or simply “Member” if no role is specified). Under committee, list each
subcommittee of the committee that this legislator serves in, as a subcommittee element. Like a
committee element, a subcommittee has a name attribute and a role attribute.

For example, here is a snippet of the output showing the committee assignment for Sen. Marco Rubio from
Florida:

Page 4 of 4

<?xml version="1.0" encoding="UTF-8"?>
<congress>
 <house>
 …
 </house>
 <senate>
 …
 <person name="Marco Rubio">
 <committee name="Senate Select Committee on Intelligence" role="Member"/>
 <committee name="Senate Committee on Commerce, Science, and Transportation" role="Member">
 <subcommittee name="Communications, Technology, Innovation, and the Internet"
role="Member"/>
 <subcommittee name="Oceans, Atmosphere, Fisheries, and Coast Guard" role="Chairman"/>
 <subcommittee name="Space, Science, and Competitiveness" role="Member"/>
 <subcommittee name="Aviation Operations, Safety, and Security" role="Member"/>
 </committee>
 <committee name="Senate Committee on Foreign Relations" role="Member">
 <subcommittee name="Africa and Global Health Policy" role="Member"/>
 <subcommittee name="East Asia, the Pacific, and International Cybersecurity Policy"
role="Member"/>
 <subcommittee name="Near East, South Asia, Central Asia, and Counterterrorism"
role="Member"/>
 <subcommittee name="Western Hemisphere, Transnational Crime, Civilian Security, Democracy,
Human Rights, and Global Women's Issues" role="Chairman"/>
 </committee>
 <committee name="Senate Committee on Small Business and Entrepreneurship" role="Member"/>
 </person>
 …
 </senate>
</congress>

To generate percom.xml from congress.xml, you have the following options:

(a) Write a Python program using SAX API (xml.sax).
(b) Write a Python program using DOM API (xml.dom).
(c) Write an XQuery.
(d) Write an XSLT program.

Please refer to the document “XML Tips” on the course website for instructions on how to write and run
these programs and queries. You should validate your output file percom.xml against the provided
percom.dtd, using the following command (more information on xmllint can be found in “XML Tips”)
xmllint --dtdvalid /opt/dbcourse/assignments/hw3/percom.dtd --noout percom.xml

You must implement two out of the four options. For each option you implement, submit source code and output.

Extra Credit Problem X1 (10 points)
Implement the other two options that you left out for Problem 3.

