Introduction

Introduction to Databases CompSci 316 Fall 2015

About us: instructor and TA

- Instructor: Jun Yang
 - Been doing (and enjoying) research in databases ever since grad school (1995)
 - Didn't take any database as an undergrad

 November of data intensive system
 - Now working on data-intensive systems and computational journalism
- Graduate TA: Zilong Tan
 - PhD student in Computer Science
 - Working on data-intensive systems and cloud platforms

About us: UTAs

Charles

Cody

Stephen

Yubo

All CompSci 316 veterans!

What comes to your mind... ... when you think about "databases"? ***The second transplant transpl

	Fitter Reports SUBMIT Fitter Reports By Propositor Hubble Pagement	A REPORT GET ALERTS WHO	S DOING WHAT WHERE HOW T	How to Report (
		21 23	21 97 22 RICE OF THE SECOND SE	8	
<u> </u>	50 by 1 30 w 1 30 w 1 25 87000, 83 70200			gricolo con a gr	

Challenges

- Moore's Law:
- Processing power doubles every 18 months
- But amount of data doubles every 9 months
 - Disk sales (# of bits) doubles every 9 months

• Parkinson's Law: Data expands to fill the space available for storage

Moore's Law reversed

Time to process all data _____every 18 months!

- __ every 18 months? • Does your attention span ____
 - No, so we need smarter data management techniques

Democratizing data (and anlaysis)

- And it's not just about money and science
- Democratization of data: more data—relevant to you and the society—are being collected
 - "Smart planet": sensors for phones and cars, roads and bridges, buildings and forests, ...
 - "Government in the sunshine": spending reports, schod performance, crime reports, corporate filings, campaign contributions, ...
- But few people know how to analyze them
- You will learn how to help bridge this divide

Misc. course info

- Website: http://sites.duke.edu/compsci316 01 f2015/
 - Course info; tentative schedule and reference sections in the book; lecture slides, assignments, help docs,...
- Book: *Database Systems: The Complete Book*, by H. Garcia-Molina, J. D. Ullman, and J. Widom. 2nd Ed.
- Programming: VM required; \$50 worth of credits for VMs in the cloud, courtesy of Amazon
- Q&A on Piazza; grades, sample solutions on Sakai
- Watch your email for announcements
- Office hours to be posted

Grading

[90%, 100%] A-/A/A+ [80%, 90%) B-/B/B+ [70%, 80%) C-/C/C+ [60%, 70%) D [0%, 60%) F

- No "curves"
- Scale may be adjusted downwards (i.e., grades upwards) if, for example, an exam is too difficult
- Scale will not go upwards—mistake would be mine alone if I made an exam too easy

Duke Community Standard

- See course website for link
- Group discussion for assignments is okay (and encouraged), but
 - Acknowledge any help you receive from others
 - Make sure you "own" your solution
- All suspected cases of violation will be aggressively pursued

(\sim 1	ırs	ا م	2	A
	. ,,	11 >	_	 $\boldsymbol{\alpha}$	

- Four homework assignments (35%)
 - Gradiance: immediately and automatically graded
 - Plus written and programming problems
- Course project (25%)
 - Details to be given in the third week of class
- Midterm and final (20% each)
 - Open book, open notes
 - No communication/Internet whatsoever
 - Final is comprehensive, but emphasizes the second half of the course

Projects from last year

- SMSmart (★★★★☆ on Google play)
 - Alan Ni, Jay Wang, Ben Schwab (UTA)
 - Search, Tweet, Yelp, etc. without a data connection—so long as you have texting on your phone
- FarmShots
 - Ouwen Huang, Arun Karottu, Yu Zhou Lee, Billy Wan
 - Helps you manage farms with analysis of satellite images
- Food Points Master
 - Howard Chung, Wenjun Mao, William Shelburne
 - Automatically tracks your DukeCard balance, and offers budgeting tools and spending analysis to help you manage your food points

•		
•		
•		
•		
•		

Projects from earlier years

- Expose.js: natural language querying
 - E.g.: "find beers served by bar with name Satisfaction"
 - Ben Schwab, James Hong, Jesse Hu, 2013
- Pickup Coordinator: an iPhone app that lets you coordinate carpool/pickups with others
 - Adam Cue, Kevin Esoda, Kate Yang, 2012
- Mobile Pay: quick way to make a transaction between two people on their phones
 - Michael Deng, Kevin Gao, Derek Zhou, 2012
- FriendsTracker app: where are my friends?
 - Anthony Lin, Jimmy Mu, Austin Benesh, Nic Dinkins, 2011

More past examples

- ePrint iPhone app
 - Ben Getson and Lucas Best, 2009
- Making iTunes social
 - Nick Patrick, 2006; Peter Williams and Nikhil Arun, 2009
- Duke Schedulator: ditch ACES—plan visually!
 - Alex Beutel, 2008
- SensorDB: manage/analyze sensor data from forest
 - Ashley DeMass, Jonathan Jou, Jonathan Odom, 2007
- Facebook
 - Tyler Brock and Beth Trushkowsky, 2005
- Web-based K-ville tenting management
 - Zach Marshall, 2005

Your turn to be creative

tp://www.yunnaymumnydub.ca/sites/default/filles/styles/large/public/field/mage/tenching kids cmeative skills.jpp

So, what is a database system?

From Oxford Dictionary:

- Database: an organized body of related information
- Database system, DataBase Management System (DBMS): a software system that facilitates the creation and maintenance and use of an electronic database

What do you want from a DBMS?

- Keep data around (persistent)
- Answer questions (queries) about data
- Update data
- Example: a traditional banking application
 - Data: Each account belongs to a branch, has anumber, an owner, a balance, ...; each branch has a location, a manager,
 - Persistency: Balance can't disappear after a power outage
 - Query: What's the balance in Homer Simpson's account? What's the difference in average balance between Springfield and Capitol City accounts?
 - Modification: Homer withdraws \$100; charge accounts with lower than \$500 balance a \$5 fee

Sounds simple!

1001#Springfield#Mr. Morgan 00987-00654#Ned Flanders#2500.00 00123-00456#Homer Simpson#400.00 00142-00857#Montgomery Burns#1000000000.00

- Text files
- Accounts/branches separated by newlines
- Fields separated by #'s

Query by programming

1001#Springfield#Mr. Morgan
......
00987-00654#Ned Flanders#2500.00
00123-00456#Homer Simpson#400.00
00142-00857#Montgomery Burns#1000000000.00

- What's the balance in Homer Simpson's account?
- A simple script
 - Scan through the accounts file
 - Look for the line containing "Homer Simpson"
 - Print out the balance

Query processing tricks

• Tens of thousands of accounts are not Homer's

What happens when the query changes to: What's the balance in account 00142-00857?

Observations

- There are many techniques—not only in storage and query processing, but also in concurrency control, recovery, etc.
- These techniques get used over and over again in different applications
- Different techniques may work better in different usage scenarios

-	

Early efforts

- "Factoring out" data management functionalities from applications and standardizing these functionalities is an important first step
 - CODASYL standard (circa 1960's)

 Bachman got a Turing award for this in 1973
- But getting the abstraction right (the API between applications and the DBMS) is still tricky

CODASYL

- Query: Who have accounts with o balance managed by a branch in Springfield?
- Pseudo-code of a CODASYL application:

Use index on account(balance) to get accounts with 0 balance; For each account record:
Get the branch id of this account;
Use index on branch(id) to get the branch record;
If the branch record's location field reads "Springfield";
Output the owner field of the account record.

- Programmer controls "navigation": accounts → branches
 - How about branches → accounts?

What's wrong?

 The best navigation strategy & the best way of organizing the data depend on data/workload characteristics

With the CODASYL approach

- To write correct code, programmers need to know how data is organized physically (e.g., which indexes exist)
- To write efficient code, programmers also need to worry about data/workload characteristics
- Gan't cope with changes in data/workload characteristics

-	

The relational revolution (1970's)

- A simple model: data is stored in relations (tables)
- A declarative query language: SQL

SELECT Account.owner FROM Account, Branch WHERE Account.balance = 0 AND Branch.location = 'Springfield' AND Account.branch_id = Branch.branch_id;

- Programmer specifies what answers a query should return, but not how the query is executed
- DBMS picks the best execution strategy based on availability of indexes, data/workload characteristics, etc.
- Provides physical data independence

Physical data independence

- Applications should not need to worry about how data is physically structured and stored
- Applications should work with a logical data model and declarative query language
- Leave the implementation details and optimization to DBMS
- The single most important reason behind the success of DBMS today
 - And a Turing Award for E. F. Codd in 1981

Standard DBMS features

- Persistent storage of data
- Logical data model; declarative queries and updates → physical data independence
- $\bullet \mbox{ Relational model is the dominating technology today } \\ \begin{tabular}{l} \b$

-	

DBMS is multi-user

• Example

get account balance from database;
if balance > amount of withdrawal then
 balance = balance - amount of withdrawal;
 dispense cash;
 store new balance into database;

- Homer at ATM1 withdraws \$100
- Marge at ATM2 withdraws \$50
- Initial balance = \$400, final balance = ?
 - Should be \$250 no matter who goes first

Final balance = \$300

Homer withdraws \$100: Marge withdraws \$50:

read balance; \$400

read balance; \$400
if balance > amount then
 balance = balance - amount; \$350
 write balance; \$350

if balance > amount then
balance = balance - amount; \$300
write balance; \$300

Final balance = \$350

Homer withdraws \$100: Marge withdraws \$50:

read balance; \$400

if balance > amount then

balance = balance - amount; \$300

write balance; \$300

if balance > amount then
 balance = balance - amount; \$350
 write balance; \$350

Concurrency control in DBMS

- Similar to concurrent programming problems?
 - But data not main-memory variables
- Similar to file system concurrent access?
 - Lock the whole table before access
 - Approach taken by MySQL in the old days
 - Still used by SQLite (as of Version 3)
 - But want to control at much finer granularity
 - Or else one withdrawal would lock up all accounts!

Recovery in DBMS

- Example: balance transfer decrement the balance of account X by \$100; increment the balance of account Y by \$100;
- Scenario 1: Power goes out after the first instruction
- Scenario 2: DBMS buffers and updates data in memory (for efficiency); before they are written back to disk, power goes out
- How can DBMS deal with these failures?

Standard DBMS features: summary

- Persistent storage of data
- Logical data model; declarative queries and updates → physical data independence
- Multi-user concurrent access
- Safety from system failures
- Performance, performance
 - Massive amounts of data (terabytes~petabytes)
 - High throughput (thousands~millions transactions/hour)
 - High availability (≥ 99.999% uptime)

-	

DBMS architecture today

- Much of the OS may be bypassed for performance and safety
- We will be filling in many details of the DBMS box throughout the semester

AYBABTU?

"Us" = relational databases

 Personal data, web, scientific data, system data, ...

- Text and semi-structured data management
 - XML, JSON, ...
- "NoSQL" and "NewSQL" movement
 - MongoDB, Cassandra, BigTable, HBase, Spanner, HANA...
- This course will look beyond relational databases

Use of AYBABTU inspired by Carcia-Molina Image: http://upload.wikimedia.org/wikipedia/en/0/03/Aybabtu.png

Course components

- Relational databases
 - Relational algebra, database design, SQL, app programming
- XMI
 - Data model and query languages, app programming, interplay between XML and relational databases
- Database internals
 - Storage, indexing, query processing and optimization, concurrency control and recovery
- Advanced topics (TBD)
 - Data warehousing and data mining, Web search and indexing, parallel data processing/MapReduce, etc.

Announcements (Tue. Aug. 25)

- Permission numbers will be emailed this Thursday evening based on the wait list
 - Contact me if you cannot get onto the wait list for some reason (e.g., prerequisites)
- Amazon AWS credit codes will be emailed based on the enrollment list by next Monday
- This Thursday: our first language of the semester—relational algebra!

·	