Relational Database Design: E/R-Relational Translation

Introduction to Databases
CompSci 316 Fall 2015

Database design steps: review
• Understand the real-world domain being modeled
• Specify it using a database design model (e.g., E/R)
• Translate specification to the data model of DBMS (e.g., relational)
• Create DBMS schema

Next: translating E/R design to relational schema

E/R model: review
• Entity sets
 • Keys
 • Weak entity sets
• Relationship sets
 • Attributes on relationships
 • Multiplicity
 • Roles
 • Binary versus n-ary relationships
 • Modeling n-ary relationships with weak entity sets and binary relationships
 • ISA relationships

Translating entity sets
• An entity set translates directly to a table
 • Attributes → columns
 • Key attributes → key columns

Translating weak entity sets
• Remember the “borrowed” key attributes
• Watch out for attribute name conflicts

Announcements (Thu. Sep. 3)
• Homework #1 due on the 15th (the Tuesday after the next)
• Please please please start early
• Project description available next week
Translating relationship sets

- A relationship set translates to a table
 - Keys of connected entity sets → columns
 - Attributes of the relationship set (if any) → columns
 - Multiplicity of the relationship set determines the key of the table

Translating double diamonds?

- Recall that a double-diamond (supporting) relationship set connects a weak entity set to another entity set
- No need to translate because the relationship is implicit in the weak entity set's translation

Translating subclasses & ISA: approach 1

- Entity-in-all-superclasses approach ("E/R style")
 - An entity is represented in the table for each subclass to which it belongs
 - A table includes only the attributes directly attached to the corresponding entity set, plus the inherited key

Translating subclasses & ISA: approach 2

- Entity-in-most-specific-class approach ("OO style")
 - An entity is only represented in one table (the most specific entity set to which the entity belongs)
 - A table includes the attributes attached to the corresponding entity set, plus all inherited attributes

Translating subclasses & ISA: approach 3

- All-entities-in-one-table approach ("NULL style")
 - One relation for the root entity set, with all attributes found in the network of subclasses (plus a "type" attribute when needed)
 - Use a special NULL value in columns that are not relevant for a particular entity
Comparison of three approaches

- Entity-in-all-superclasses
 - User (uid, name), PaidUser (uid, avatar)
 - Pro: All users are found in one table
 - Con: Attributes of paid users are scattered in different tables

- Entity-in-most-specific-class
 - User (uid, name), PaidUser (uid, name, avatar)
 - Pro: All attributes of paid users are found in one table
 - Con: Users are scattered in different tables

- All-entities-in-one-table
 - User (uid, [type], name, avatar)
 - Pro: Everything is in one table
 - Con: Lots of NULL’s; complicated if class hierarchy is complex

Simplifications and refinements

- Eliminate LocalTrain table
 - Redundant: can be computed as
 \[\pi_{\text{number}}(\text{Train}) - \pi_{\text{number}}(\text{ExpressTrain}) \]
 - Slightly harder to check that local_train_number is indeed a local train number

- Eliminate LocalStation table
 - It can be computed as \[\pi_{\text{number}}(\text{Station}) - \pi_{\text{number}}(\text{ExpressStation}) \]

An alternative design

- Encode the type of train/station as a column rather than creating subclasses
- What about the following constraints?
 - Type must be either “local” or “express”
 - Express trains only stop at express stations
 - They can be expressed/declared explicitly as database constraints in SQL (as we will see later in course)
- Arguably a better design because it is simpler!

Design principles

- KISS
 - Keep It Simple, Stupid
- Avoid redundancy
 - Redundancy wastes space, complicates modifications, promotes inconsistency
- Capture essential constraints, but don’t introduce unnecessary restrictions
- Use your common sense
 - Warning: mechanical translation procedures given in this lecture are no substitute for your own judgment