9/22/15

SQL: Part

Introduction to Databases
CompSci 316 Fall 2015

v DUKE
COMPUTER SCIENCE

Announcements (Tue., Sep. 15)

due tonight
to be posted on Sakai by Thursday
posted; due in three weeks
* But get started early!
this Thursday

* | will put people in random groups of 4 with assigned
seating (watch for instructions via email)

* Discussion for 30 minutes
* Free-for-all pitches to the class (limited 5 minutes each)
* More discussion

Incomplete information

* Example: User (uid, name, age, pop)
* Value

* We do not know Nelson’s age
* Value

* Suppose pop is based on interactions with otherson our
social networking site
* Nelson is new to our site; what is hispop?

Solution 1

* Dedicate a value from each domain (type)
* pop cannot be —1, so use —1 as a special value to
indicate a missing orinvalid pop
* Leads to incorrect answers if not careful
* SELECT AVG(pop) FROM User;
* Complicates applications
+ SELECT AVG(pop) FROM User
WHERE pop <> -1; DECEMBER 31,1999
* Perhaps the value is not 11:59 PM
as special as you think!

* Ever heard of the Y2K bug?
“00” wasused as a
missing or invalid year value

JANUARY 1, 2000
12:01 AM

Solution 2

* A valid-bit for every column
* User (uid, name, name_is_valid,
age, age_is_valid,
pop, pop_is_valid)
* Complicates schema and queries

* SELECT AVG(pop) FROM User
WHERE pop is_valid;

Solution 3

* Decompose the table; missing row = missing value
* UserName (uid, name)
UserAge (uid, age)
UserPop (uid, pop)
* UserID (uid)
* Conceptually the cleanest solution
« Still complicates schema and queries
* How to get all information about users in atable?
« Natural join doesn’t work!

SQL’s solution

* A special value
* For every domain
* Special rules for dealing with NULL'’s

* Example: User (uid, name, age, pop)
* (789, “Nelson”, NULL, NULL)

9/22/15

Computing with NULL’s

* When we operate on a NULL and another value
(including another NULL) using +, —, etc., the
resultis NULL

» Aggregate functions ignore NULL, except
COUNT (*) (since it counts rows)

Three-valued logic

* TRUE =1, FALSE = o, =05

* x AND y = min(x,y)

* x OR y = max(x,y)

*NOTx=1-—x

* When we compare a NULL with another value

(including another NULL) using =, >, etc., the
result is UNKNOWN

* WHERE and HAVING clauses only select rows for
output if the condition evaluates to TRUE

* UNKNOWN is not enough

Unfortunate consequences

* SELECT AVG(pop) FROM User;
SELECT SUM(pop)/COUNT (*) FROM User;
* Not equivalent
* Although AVG (pop) =SUM(pop) J/COUNT(pop) still
* SELECT * FROM User;
SELECT * FROM User WHERE pop = pop;
* Not equivalent

#Be careful: NULL breaks many equivalences

Anotherproblem

* Example: Who has NULL pop values?
* SELECT * FROM User WHERE pop = NULL;

« Does not work; never returns anything

* (SELECT * FROM User)
EXCEPT ALL
(SELECT * FROM User WHERE pop = pop);
* Works, but ugly
* SQL introduced special, built-in predicates
and
+ SELECT * FROM User WHERE pop IS NULL;

Outerjoin motivation

* Example: a master group membership list
*+ SELECT g.gid, g.name AS gname,
u.uid, u.name AS uname
FROM Group g, Member m, User u
WHERE g.gid = m.gid AND m.uid = u.uid;
* What if a group is empty?
* It may be reasonable for the masterlist to indude empty
groups as well
* For these groups, uid and uname columns would be NULL

Outerjoin flavors and definitions

* A full outerjoin between R and S (denoted R < 5)
includes all rows in the result of R x §, plus

* “Dangling” R rows (those that do not join with any §
rows) padded with NULL’s for S’ columns

* “Dangling” S rows (those that do not join with any R
rows) padded with NULL’s for R’s columns
* Aleft outerjoin (R >4 S)includes rows in R = S plus
dangling R rows padded with NULL’s

* Aright outerjoin (R >< S)includes rows inR » S
plus dangling S rows padded with NULL’s

9/22/15

Outerjoin examples

[gd name Jud |
Group >4 Member @¢ Book Club &/

gov Student Government 123

gov Student Government 857

Group dps Dead Putting Society 142

mk United Nuclear Workers NULL

abe Book Club
gov Student Government
dps
nuk

g]
Dead Putting Soci ety]
B Group > Member abec Book Club 857
United Nuclear Workers
gov Student Government 123
gov Student Government 857
Member dps Dead Putting Society 142
uid | gid | foo NULL 789
142 dps
2N g0 Lome]
G| ek Croup > Member aec Book Club 857
8578 80y, gov Student Government 123
)| & gov Student Covernment 857
dps Dead Putting Society 142
mk United Nuclear Workers NULL
foo NULL 789

Outerjoin syntax

* SELECT * FROM Group LEFT OUTER JOIN Member
ON Group.gid = Member. gid;
~ Group > Member
Group.gid =M ember .gid

* SELECT * FROM Group RIGHT OUTER JOIN Member
ON Group.gid = Member. gid;
~ Group > Member
Group.gid =M ember .gid
* SELECT * FROM Group FULL OUTER JOIN Member
ON Group.gid = Member. gid;
~ Group > Member
Group.gid =M ember .gid
@A similar construct exists for regular (“inner”) joins:
* SELECT * FROM Group JOIN Member
ON Group.gid = Member.gid;
wThese are theta joins rather than natural joins
* Retum all columns in Group and Member

wFor natural joins, add keyword NATURAL; don’t use ON

SQL features covered so far

* SELECT-FROM-WHERE statements
* Set and bag operations

* Table expressions, subqueries

* Aggregation and grouping

* Ordering

* NULL’s and outerjoins

@ Next: data modification statements, constraints

INSERT

* Insert one row

* INSERT INTO Member VALUES (789, 'dps');
* User 789 joins Dead Putting Society

* Insert the result of a query
* INSERT INTO Member
(SELECT uid, 'dps' FROM User
WHERE uid NOT IN (SELECT uid
FROM Member
WHERE gid = 'dps'));
* Everybody joins Dead Putting Society!

DELETE

* Delete everything from a table
* DELETE FROM Member;

* Delete according to aWHERE condition

Example: User 789 leaves Dead Putting Society

* DELETE FROM Member

WHERE uid = 789 AND gid = 'dps';
Example: Users under age 18 must be removed
from United Nuclear Workers

* DELETE FROM Member

WHERE uid IN (SELECT uid FROM User

WHERE age < 18)
AND gid = 'nuk';

UPDATE

* Example: User 142 changes name to “Barney”

* Example: We are all popular!

* But won’t update of every row causes average pop to change?
@ Subquery is always computed over the old table

9/22/15

Constraints

* Restrictions on allowable data in a database
* In addition to the simple structure and type restrictions
imposed by the table definitions
* Declared as
* Enforced by the DBMS

* Why use constraints?
* Protect data integrity (catch errors)
* Tell the DBMS about the data(so it can optimize better)

Types of SQL constraints

* NOT NULL

* Key

* Referential integrity (foreign key)
* General assertion

* Tuple- and attribute-based CHECK’s

NOT NULL constraint examples

« CREATE TABLE User

(uid INTEGER ,
name VARCHAR(30) ,
twitterid VARCHAR(15) ,

age INTEGER,
pop FLOAT) ;
* CREATE TABLE Group

(gid CHAR(10) ’

name VARCHAR(100))3
* CREATE TABLE Member

(uid INTEGER ,

gid CHAR(10))5

Key declaration

* At most one per table
* Typically implies a
* Rows are stored inside the index, typically sorted by the
primary key value = best speedup for queries
* Any number of keys per table
* Typically implies a
* Pointers to rows are stored inside the index = less
speedup for queries

Key declaration examples

* CREATE TABLE User
(uid INTEGER NOT NULL ,
name VARCHAR(30) NOT NULL,
twitterid VARCHAR(15) NOT NULL ,
age INTEGER,
pop FLOAT) ;

* CREATE TABLE Group
(gid CHAR(10) NOT NULL ’
name VARCHAR(100) NOT NULL);

* CREATE TABLE Member
(uid INTEGER NOT NULL,
gid CHAR(10) NOT NULL,

)3

\ This form is required for multi-attribute keys

Referential integrity example

* Member.uid references User.uid

* If an uid appears in Member, it must appear in User

* Member.gid references Group.gid

* If a gid appears in Member, it must appear in Group

#Thatis, no “dangling pointers”

User Member
uid [name ||
142 Bart v e 142 dps

123 Milhouse .. < 123 gov
857 Lisa < 857 abc
456 Ralph 857

gov
789 Nelson \ 456 abc
456

Grou,
(i | name)

abc
gov

dps

9/22/15

Referential integrity in SQL

* Referenced column(s) must be PRIMARY KEY
* Referencing column(s) forma

* Example

* CREATE TABLE Member
(uid INTEGER NOT NULL

gid CHAR(10) NOT NULL,
PRIMARY KEY(uid, gid),

Enforcing referential integrity

Example:

* Insert or update a Member row so it refers to a non-

existent uid

* Delete or update a User row whose uid is

referenced by some Member row

: ripple changes to all referring rows

: set allreferences to NULL

* All three options can be specified in SQL

Deferred constraint checking

* No-chicken-no-egg problem

* CREATE TABLE

(CHAR (20) NOT NULL PRIMARY KEY,

CHAR(30) NOT NULL
) .
CREATE TABLE ’
(CHAR (30) NOT NULL PRIMARY KEY,
CHAR (20) NOT NULL
)3
* The first INSERT will always violate aconstraint!
is necessary

* Check only at the end of a transaction

* Allowed in SQL as an option

* Curious how the schema was created in the first place?
(read the manual!)

General assertion

* assertion_conditionis checked for each
modification that could potentially violate it

» Example: Member.uid references User.uid

#In SQL3, but not all (perhaps no) DBMS supports it

Tuple- and attribute-based CHECK’s

* Associated with asingle table

* Only checked when atuple or an attribute is
inserted or updated

* Examples:

« CREATE TABLE User(...
age INTEGER

P I
* CREATE TABLE Member
(uid INTEGER NOT NULL

cee)
* Isit areferential integrity constraint?
* Not quite; not checked when User is modified

SQL features covered sofar

* Query
* SELECT -FROM-WHERE statements
* Set and bag operations
* Table expressions, subqueries
* Aggregation and grouping
* Ordering
* Outerjoins
* Modification
* INSERT/DELETE /UPDATE
* Constraints

“Next: triggers, views, indexes

9/22/15

