SQL:
Triggers, Views, Indexes

Introduction to Databases
CompSci 316 Fall 2015

v DUKE
COMPUTER SCIENCE

9/22/15

Announcements (Tue., Sep. 22)

posted on Sakai

due in two weeks (Tuesday)
* Midterm on Thursday of the sameweek

due Thursday, Oct. 15
* See project description on what to accomplish by then

“Active” data

* Constraint enforcement: When an operation
violates a constraint, abort the operation or try to
“fix”’ data

* Example: enforcing referential integrity constraints
* Generalize to arbitrary constraints?

* Data monitoring: When something happens to the
data, automatically execute some action
* Example: When price rises above $20 per share, sell

* Example: When enrollment is at the limit and more
students try to register, email the instructor

Triggers

A is an (ECA)rule
* When occurs, test ; if condition is
satisfied, execute

* Example:
: some user’s popularity is updated
: the user is a member of
“Jessica’s Circle,” and pop drops below 0.5

: kick that user out of Jessica’s Cirde

)

Ado.on/ukiargin:Jasica oveiov.ipg

9/22/15

Trigger example

CREATE TRIGGER
AFTER UPDATE OF pop ON User
REFERENCING NEW ROW AS newUser
FOR EACH ROW
WHEN (newUser.pop < 0.5)
AND (newUser.uid IN (SELECT uid
FROM Member
WHERE gid = 'jes'))
DELETE FROM Member
WHERE uid = newUser.uid AND gid = 'jes';

Trigger options

* Possible events include:
table
table
[OF column] ON table
* Granularity—trigger can be activated:
modified
that performs modification
* Timing—action can be executed:
or the triggering event
the triggering event on views (morelater)

Transition variables

: the modified row before the triggering event
: the modified row after the triggering event

: a hypothetical read-only table containing
all rows to be modified before the triggering event

: a hypothetical table containing all
modified rows after the triggering event

@ Not all of them make sense all the time, e.g.
* AFTER INSERT statement-level triggers
¢ Canuseonly NEW TABLE
* BEFORE DELETE row-level triggers
* Can useonly
* etc

9/22/15

Statement-level trigger example

CREATE TRIGGER
AFTER UPDATE OF pop ON User
REFERENCING NEW TABLE AS newUsers
FOR EACH STATEMENT
DELETE FROM Member
WHERE gid = 'jes'
AND uid IN (SELECT uid
FROM newUsers
WHERE pop < 0.5);

BEFORE trigger example

* Never allow age to decrease

CREATE TRIGGER

BEFORE UPDATE OF age ON User

REFERENCING OLD ROW AS o,

NEW ROW AS n

FOR EACH ROW

WHEN (n.age < o.age)

SET n.age = o.age;

*BEFORE triggers are often used to
“condition” data

< Another option is to raise an error in the trigger
body to abort the transaction that caused the
trigger to fire

Statement- vs. row-level triggers

Why are both needed?
* Certain triggers are only possible at statement level

* Simple row-level triggers are easier to implement
* Statement-level triggers require significant amount of
state to be maintained in OLD TABLE and NEW TABLE
* However, a row-level trigger gets fired for each row, so
complex row-level triggers may be less efficient for
statements that modify many rows

9/22/15

System issues

* Recursive firing of triggers
* Action of one trigger causesanother trigger tofire
* Can get intoan infinite loop

* Some DBMSleave it to programmers/database administrators
(e.g., PostgresQL)
* Some restrict trigger actions (e.g., Oracle)
* Many setamaximum level of recursion (e.g., 16in DB2)
* Interaction with constraints (tricky to get right!)
* When do we check if a triggering event violates constraints?
* After aBEFORE trigger (so the trigger can fixa potential violation)
« Before anAFTER trigger
* AFTER triggers also see the effects of, say, cascaded deletes
caused by referential integrity constraint vidations
(Based on DB2; other DBMS may differ)

Views

A is like a “virtual” table
* Defined by a query, which describes how to compute
the view contents on the fly
* DBMS stores the instead of view
contents
* Can be used in queries just like a regular table

Creating and dropping views

* Example: members of Jessica’s Circle
JessicaCircle
SELECT * FROM User
WHERE uid IN (SELECT uid FROM Member
WHERE gid = 'jes');
* Tables used in defining a view are called “base tables”
¢ User and Member above
* To drop a view
JessicaCircle;

9/22/15

Using views in queries

» Example: find the average popularity of members in
Jessica’s Circle
+ SELECT AVG(pop) FROM ;
* To process the query, replacethe referenceto theview
by its definition
* SELECT AVG (pop)
FROM

Why use views?

* To hide data from users
* To hide complexity from users

« If applications deal with views, we can change the
underlying schema without affecting applications

* Recall : change thephysica
organization of data without affecting applications

* To provide a uniform interface for different
implementations or sources

@ Real database applications use tons of views

Modifying views

* Does it even make sense, since views are virtual?

* It does make sense if we want users to really see
views as tables

* Goal: modify the base tables such that the
modification would appear to have been
accomplished on the view

9/22/15

A simple case

DELETE FROM UserPop WHERE uid = 123;
translates to:

DELETE FROM User WHERE uid = 123;

Animpossible case

INSERT INTO PopularUser
VALUES (987, 0.3);

* No matter what we do on User, the inserted row
will not be in PopularUser

A case with too many possibilities

* Note that you can rename columns inview definition

UPDATE AveragePop SET pop = 0.5;

* Set everybody’s pop to 0.5?

* Adjust everybody’s pop by the same amount?
* Just lower Jessica’s pop?

9/22/15

SQL92 updateable views

* More or less just single-table selection queries
* Nojoin
* No aggregation
* No subqueries

* Arguably somewhat restrictive

* Still might get it wrong in some cases
* See the slide titled “An impossible case”
* Adding to the end of the view
definition will make DBMS reject suchmodifications

INSTEAD OF triggers forviews

CREATE TRIGGER

UPDATE ON AveragePop
REFERENCING OLD ROW AS o,

NEW ROW AS n
FOR EACH ROW
UPDATE User
SET pop = pop + (n.pop-o.pop);
* What does this trigger do?

Indexes

* An is an auxiliary persistent data structure

* Search tree (e.g., B*tree), lookup table (e.g, hash table), etc.
More on indexes later in this course!
* Anindex on R.A canspeed up accesses of the form

*R.A = value
* R.A > value (sometimes; dependngontheindex type)

¢ Anindex on (R.Al, ...,R.An) can speed up
* R.A; =value; A A R.A, =value,
* (R.A1, ..., R A4y) > (valuey, ..., value,) (again depends)

Ordering or index columns is important—is an index
on (R.A,R.B) equivalent to one on (R.B,R.A)?

& How about anindex on R.A plus another on R.B?

9/22/15

Examples of using indexes

* SELECT * FROM User WHERE name = 'Bart';
* Without an index on User.name: must scanthe entire
table if we store Useras aflat file of unordered rows
* With index: go “directly” to rows with name="Bart '

* SELECT * FROM User, Member
WHERE User.uid = Member.uid
AND Member.gid = 'jes';
* With an index on Member.gid or (gid, uid). find relevant
Member rows directly
» With an index on User.uid: for each relevant Member
row, directly look up User rows with matching uid
* Without it: for each Member row, scanthe entire User table for
matching uid
« Sorting could help

Creating and dropping indexesin SQL

* With UNIQUE, the DBMS will also enforce that
{columnname,, ..., columnname,}is a key of
tablename

* Typically, the DBMS will automatically create
indexes for PRIMARY KEY and UNIQUE constraint

declarations

9/22/15

Choosingindexesto create

More indexes = better performance?

& Optimal index selection depends on both query
and update workload and the size of tables

* Automatic index selection isnow featured in some
commercial DBMS

SQL features covered so far

* Query
* Modification

» Constraints
* Triggers
* Views

* Indexes

