SQL: Recursion

Introduction to Databases
CompSci 316 Fall 2015
Announcements (Tue., Sep. 29)

• Homework #2 due in one week
• Midterm in class next Thursday
 • Open-book, open-notes
 • Same format as sample midterm (from last year), posted on Sakai
 • Sample solution to be posted on Thursday
• Project Milestone #1 due the following Thursday
A motivating example

Parent (*parent, child*)

<table>
<thead>
<tr>
<th>parent</th>
<th>child</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homer</td>
<td>Bart</td>
</tr>
<tr>
<td>Homer</td>
<td>Lisa</td>
</tr>
<tr>
<td>Marge</td>
<td>Bart</td>
</tr>
<tr>
<td>Marge</td>
<td>Lisa</td>
</tr>
<tr>
<td>Abe</td>
<td>Homer</td>
</tr>
<tr>
<td>Ape</td>
<td>Abe</td>
</tr>
</tbody>
</table>

- Example: find Bart’s ancestors
- “Ancestor” has a recursive definition
 - *X* is *Y*’s ancestor if
 - *X* is *Y*’s parent, or
 - *X* is *Z*’s ancestor and *Z* is *Y*’s ancestor
Recursion in SQL

• SQL2 had no recursion
 • You can find Bart’s parents, grandparents, great grandparents, etc.

    ```sql
    SELECT p1.parent AS grandparent
    FROM Parent p1, Parent p2
    WHERE p1.child = p2.parent
    AND p2.child = 'Bart';
    
    SELECT p1.parent AS grandparent
    FROM Parent p1, Parent p2
    WHERE p1.child = p2.parent
    AND p2.child = 'Bart';
    
    • But you cannot find all his ancestors with a single query
  
• SQL3 introduces recursion
  • `WITH` clause
  • Implemented in PostgreSQL (`common table expressions`)
Ancestor query in SQL3

\[
\text{WITH RECURSIVE}
\]
\[
\text{Ancestor}(\text{anc}, \text{desc}) \text{ AS}
\]
\[
((\text{SELECT parent, child FROM Parent})
\]
\[
\text{UNION}
\]
\[
(\text{SELECT a1.anc, a2.desc FROM Ancestor a1, Ancestor a2}
\]
\[
\text{WHERE a1.desc = a2.anc})
\]
\[
\text{SELECT anc}
\]
\[
\text{FROM Ancestor}
\]
\[
\text{WHERE desc = 'Bart';}
\]

*base case*

*Define a relation recursively*

*recursion step*

*Query using the relation defined in WITH clause*
Fixed point of a function

• If \( f : T \rightarrow T \) is a function from a type \( T \) to itself, a **fixed point** of \( f \) is a value \( x \) such that \( f(x) = x \)
• Example: What is the fixed point of \( f(x) = x/2 \)?
  • 0, because \( f(0) = 0/2 = 0 \)
• To compute a fixed point of \( f \)
  • Start with a “seed”: \( x \leftarrow x_0 \)
  • Compute \( f(x) \)
    • If \( f(x) = x \), stop; \( x \) is fixed point of \( f \)
    • Otherwise, \( x \leftarrow f(x) \); repeat
• Example: compute the fixed point of \( f(x) = x/2 \)
  • With seed 1: 1, 1/2, 1/4, 1/8, 1/16, ... \( \rightarrow 0 \)

Doesn’t always work, but happens to work for us!
Fixed point of a query

• A query \( q \) is just a function that maps an input table to an output table, so a **fixed point** of \( q \) is a table \( T \) such that \( q(T) = T \)

• To compute fixed point of \( q \)
  • Start with an empty table: \( T \leftarrow \emptyset \)
  • Evaluate \( q \) over \( T \)
    • If the result is identical to \( T \), stop; \( T \) is a fixed point
    • Otherwise, let \( T \) be the new result; repeat

\( \emptyset \) produces the **unique minimal fixed point** (assuming \( q \) is monotone)
Finding ancestors

• WITH RECURSIVE
  Ancestor(anc, desc) AS
  ((SELECT parent, child FROM Parent)
   UNION
   (SELECT a1.anc, a2.desc
    FROM Ancestor a1,
    Ancestor a2
    WHERE a1.desc = a2.anc))
• Think of the definition as Ancestor = q(Ancestor)
Intuition behind fixed-point iteration

• Initially, we know nothing about ancestor-descendent relationships
• In the first step, we deduce that parents and children form ancestor-descendent relationships
• In each subsequent steps, we use the facts deduced in previous steps to get more ancestor-descendent relationships
• We stop when no new facts can be proven
Linear recursion

• With linear recursion, a recursive definition can make only one reference to itself

• Non-linear
  • WITH RECURSIVE Ancestor(anc, desc) AS
    ((SELECT parent, child FROM Parent)
    UNION
    (SELECT al.anc, a2.desc
     FROM Ancestor al, Ancestor a2
     WHERE al.desc = a2.anc))

• Linear
  • WITH RECURSIVE Ancestor(anc, desc) AS
    ((SELECT parent, child FROM Parent)
    UNION
    (SELECT anc, child
     FROM Ancestor, Parent
     WHERE desc = parent))
Linear vs. non-linear recursion

• Linear recursion is easier to implement
  • For linear recursion, just keep joining newly generated Ancestor rows with Parent
  • For non-linear recursion, need to join newly generated Ancestor rows with all existing Ancestor rows

• Non-linear recursion may take fewer steps to converge, but perform more work
  • Example: $a \rightarrow b \rightarrow c \rightarrow d \rightarrow e$
  • Linear recursion takes 4 steps
  • Non-linear recursion takes 3 steps
    • More work: e.g., $a \rightarrow d$ has two different derivations
Mutual recursion example

• Table *Natural* \( (n) \) contains 1, 2, \( \ldots \), 100
• Which numbers are even/odd?
  • An odd number plus 1 is an even number
  • An even number plus 1 is an odd number
  • 1 is an odd number

WITH RECURSIVE Even\((n)\) AS
  (SELECT n FROM Natural
  WHERE n = ANY(SELECT n+1 FROM Odd)),
RECURSIVE Odd\((n)\) AS
  ((SELECT n FROM Natural WHERE n = 1)
  UNION
  (SELECT n FROM Natural
  WHERE n = ANY(SELECT n+1 FROM Even)))
Semantics of WITH

• WITH RECURSIVE \( R_1 \) AS \( Q_1 \), ..., RECURSIVE \( R_n \) AS \( Q_n \)

\( Q \);

• \( Q \) and \( Q_1, ..., Q_n \) may refer to \( R_1, ..., R_n \)

• Semantics

1. \( R_1 \leftarrow \emptyset, ..., R_n \leftarrow \emptyset \)

2. Evaluate \( Q_1, ..., Q_n \) using the current contents of \( R_1, ..., R_n \):

\( R_1^{\text{new}} \leftarrow Q_1, ..., R_n^{\text{new}} \leftarrow Q_n \)

3. If \( R_i^{\text{new}} \neq R_i \) for some \( i \)

3.1. \( R_1 \leftarrow R_1^{\text{new}}, ..., R_n \leftarrow R_n^{\text{new}} \)

3.2. Go to 2.

4. Compute \( Q \) using the current contents of \( R_1, ... R_n \) and output the result
Computing mutual recursion

WITH RECURSIVE Even(n) AS
  (SELECT n FROM Natural
   WHERE n = ANY(SELECT n+1 FROM Odd)),
RECURSIVE Odd(n) AS
  ((SELECT n FROM Natural WHERE n = 1)
   UNION
   (SELECT n FROM Natural
    WHERE n = ANY(SELECT n+1 FROM Even)))

• Even = ∅, Odd = ∅
• Even = ∅, Odd = {1}
• Even = {2}, Odd = {1}
• Even = {2}, Odd = {1, 3}
• Even = {2, 4}, Odd = {1, 3}
• Even = {2, 4}, Odd = {1, 3, 5}
• ...

Fixed points are not unique

WITH RECURSIVE
Ancestor(anc, desc) AS
((SELECT parent, child FROM Parent)
UNION
(SELECT al.anc, a2.desc
FROM Ancestor al, Ancestor a2
WHERE al.desc = a2.anc))

<table>
<thead>
<tr>
<th>parent</th>
<th>child</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homer</td>
<td>Bart</td>
</tr>
<tr>
<td>Homer</td>
<td>Lisa</td>
</tr>
<tr>
<td>Marge</td>
<td>Bart</td>
</tr>
<tr>
<td>Marge</td>
<td>Lisa</td>
</tr>
<tr>
<td>Abe</td>
<td>Homer</td>
</tr>
<tr>
<td>Ape</td>
<td>Abe</td>
</tr>
<tr>
<td>Abe</td>
<td>Bart</td>
</tr>
<tr>
<td>Abe</td>
<td>Lisa</td>
</tr>
<tr>
<td>Ape</td>
<td>Homer</td>
</tr>
<tr>
<td>Ape</td>
<td>Bart</td>
</tr>
<tr>
<td>Ape</td>
<td>Lisa</td>
</tr>
<tr>
<td>Bogus</td>
<td>Bogus</td>
</tr>
</tbody>
</table>

Note how the bogus tuple reinforces itself!

• But if $q$ is monotone, then all these fixed points must contain the fixed point we computed from fixed-point iteration starting with $\emptyset$
  • Thus the unique **minimal** fixed point is the “natural” answer
Mixing negation with recursion

• If $q$ is non-monotone
  • The fixed-point iteration may flip-flop and never converge
  • There could be multiple minimal fixed points—we wouldn’t know which one to pick as answer!

• Example: popular users ($\text{pop} \geq 0.8$) join either Jessica’s Circle or Tommy’s
  • Those not in Jessica’s Circle should be in Tom’s
  • Those not in Tom’s Circle should be in Jessica’s

• WITH RECURSIVE TommyCircle(uid) AS
  (SELECT uid FROM User WHERE pop $\geq$ 0.8
   AND uid NOT IN (SELECT uid FROM JessicaCircle)),

  RECURSIVE JessicaCircle(uid) AS
  (SELECT uid FROM User WHERE pop $\geq$ 0.8
   AND uid NOT IN (SELECT uid FROM TommyCircle))
Fixed-point iter may not converge

WITH RECURSIVE TommyCircle(uid) AS
  (SELECT uid FROM User WHERE pop >= 0.8
   AND uid NOT IN (SELECT uid FROM JessicaCircle)),
RECURSIVE JessicaCircle(uid) AS
  (SELECT uid FROM User WHERE pop >= 0.8
   AND uid NOT IN (SELECT uid FROM TommyCircle))

<table>
<thead>
<tr>
<th>uid</th>
<th>name</th>
<th>age</th>
<th>pop</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>0.9</td>
</tr>
<tr>
<td>121</td>
<td>Allison</td>
<td>8</td>
<td>0.85</td>
</tr>
</tbody>
</table>
Multiple minimal fixed points

WITH RECURSIVE TommyCircle(uid) AS
(SELECT uid FROM User WHERE pop >= 0.8
AND uid NOT IN (SELECT uid FROM JessicaCircle)),
RECURSIVE JessicaCircle(uid) AS
(SELECT uid FROM User WHERE pop >= 0.8
AND uid NOT IN (SELECT uid FROM TommyCircle))

<table>
<thead>
<tr>
<th>uid</th>
<th>name</th>
<th>age</th>
<th>pop</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>0.9</td>
</tr>
<tr>
<td>121</td>
<td>Allison</td>
<td>8</td>
<td>0.85</td>
</tr>
</tbody>
</table>

**TommyCircle** ↔ **JessicaCircle**

**TommyCircle** ↔ **JessicaCircle**
Legal mix of negation and recursion

• Construct a **dependency graph**
  • One node for each table defined in `WITH`
  • A directed edge \( R \rightarrow S \) if \( R \) is defined in terms of \( S \)
  • Label the directed edge “—” if the query defining \( R \) is not monotone with respect to \( S \)

• Legal SQL3 recursion: no cycle with a “—” edge
  • Called **stratified negation**

• Bad mix: a cycle with at least one edge labeled “—”

\[ \begin{align*}
\text{Ancestor} & \quad \text{Legal!} \\
\text{TommyCircle} & \rightarrow \text{JessicaCircle} \\
\text{Illegal!} & \end{align*} \]
Stratified negation example

• Find pairs of persons with no common ancestors

WITH RECURSIVE Ancestor(anc, desc) AS
((SELECT parent, child FROM Parent) UNION
 (SELECT a1.anc, a2.desc
  FROM Ancestor a1, Ancestor a2
  WHERE a1.desc = a2.anc)),

Person(person) AS
((SELECT parent FROM Parent) UNION
 (SELECT child FROM Parent)),

NoCommonAnc(person1, person2) AS
((SELECT p1.person, p2.person
  FROM Person p1, Person p2
  WHERE p1.person <> p2.person)
EXCEPT
 (SELECT a1.desc, a2.desc
  FROM Ancestor a1, Ancestor a2
  WHERE a1.anc = a2.anc))

SELECT * FROM NoCommonAnc;
Evaluating stratified negation

- The **stratum** of a node $R$ is the maximum number of “—” edges on any path from $R$ in the dependency graph
  - Ancestor: stratum 0
  - Person: stratum 0
  - NoCommonAnc: stratum 1

- Evaluation strategy
  - Compute tables lowest-stratum first
  - For each stratum, use fixed-point iteration on all nodes in that stratum
    - Stratum 0: Ancestor and Person
    - Stratum 1: NoCommonAnc

☞ Intuitively, there is **no negation within each stratum**
Summary

• SQL3 WITH recursive queries
• Solution to a recursive query (with no negation): unique minimal fixed point
• Computing unique minimal fixed point: fixed-point iteration starting from $\emptyset$
• Mixing negation and recursion is tricky
  • Illegal mix: fixed-point iteration may not converge; there may be multiple minimal fixed points
  • Legal mix: stratified negation (compute by fixed-point iteration stratum by stratum)