SAX and DOM

Introduction to Databases
CompSci 316 Fall 2015
Announcements (Thu., Oct. 29)

- Homework #3 due next Tuesday
- Project milestone #2 due in a week
SAX & DOM

Both are API’s for XML processing

- **SAX** (Simple API for XML)
 - Started out as a Java API, but now exists for other languages too

- **DOM** (Document Object Model)
 - Language-neutral API with implementations in Java, C++, python, etc.
SAX processing model

• Serial access
 • XML document is processed as a stream
 • Only one look at the data
 • Cannot go back to an early portion of the document

• Event-driven
 • A parser generates events as it goes through the document (e.g., start of the document, end of an element, etc.)
 • Application defines event handlers that get invoked when events are generated
SAX events

Most frequently used events:

• **startDocument**
• **endDocument**
• **startElement**
• **endElement**
• **characters**

 • Whenever the parser has processed a chunk of character data (without generating other kinds of events)

 • Warning: The parser may generate multiple characters events for one piece of text

Whitespace may come up as characters or ignorableWhitespace, depending on whether a DTD is present.
A simple SAX example

• Print out text contents of title elements

```python
import sys
import xml.sax
from StringIO import StringIO

class PathHandler(xml.sax.ContentHandler):
    def startDocument(self):
        .....  
    def startElement(self, name, attrs):
        .....  
            .....  

xml.sax.parse(sys.stdin, PathHandler())
```
A simple SAX example (cont’d)

def startDocument(self):
 self.outBuffer = None

def startElement(self, name, attrs):
 if name == 'title':
 self.outBuffer = StringIO()

def endElement(self, name):
 if name == 'title':
 print self.outBuffer.getvalue()
 self.outBuffer = None

def characters(self, content):
 if self.outBuffer is not None:
 self.outBuffer.write(content)
A common mistake

What is wrong with the following?

```python
def endElement(self, name):
    # print the last chunk of chars before </title>:
    if name == 'title':
        print self.chars

def characters(self, content):
    self.chars = content
```
A more complex SAX example

• Print out the text contents of top-level section titles in books, i.e., //book/section/title
 • Old code would print out all titles, e.g., //book/title, //book//section/title
 • For simplicity, assume that if we have the pattern //book/section/title//book/section/title, we print the higher-level title element

• Idea: maintain as state the path from the root

```python
def startDocument(self):
    self.path = list()
    self.pathLenWhenOutputStarts = None
    self.outBuffer = None
```
def startElement(self, name, attrs):
 self.path.append(name) # maintain the path
 if len(self.path) >= 3 and
 self.path[-3:] == ['book', 'section', 'title']:
 # path matches //book/section/title:
 if self.outBuffer is None:
 self.pathLenWhenOutputStarts = len(self.path)
 self.outBuffer = StringIO()

def endElement(self, name):
 if self.outBuffer is not None and
 len(self.path) == self.pathLenWhenOutputStarts:
 print self.outBuffer.getvalue()
 self.outBuffer = None
 self.path.pop() # maintain the path

def characters(self, content):
 if self.outBuffer is not None:
 self.outBuffer.write(content)

Would it work if we remove this check?

Would it work if we change this check to name == "title"?
DOM processing model

- XML is parsed by a parser and converted into an in-memory DOM tree
- DOM API allows an application to
 - Construct a DOM tree from an XML document
 - Traverse and read a DOM tree
 - Construct a new, empty DOM tree from scratch
 - Modify an existing DOM tree
 - Copy subtrees from one DOM tree to another
 etc.
DOM Node’s

• A DOM tree is made up of Node’s

• Most frequently used types of Node’s:
 • **Document**: root of the DOM tree
 • Not the same as the root element of XML
 • **DocumentType**: corresponds to the DOCTYPE declaration in an XML document
 • **Element**: corresponds to an XML element
 • **Attr**: corresponds to an attribute of an XML element
 • **Text**: corresponds to chunk of text
DOM example

Whitespace in between elements is also parsed as Text (unless DTD or parsing option specify otherwise)
Node interface

\texttt{n.nodeType} returns the type of Node \texttt{n}

\texttt{n.childNodes} returns a list containing \texttt{n}'s children
 - E.g., subelements are children of an Element; DocumentType is a child of the Document
 - \texttt{n.appendChild(c)} adds Node \texttt{c} as the last child of \texttt{n}

\texttt{d.documentElement} returns the root Element of Document \texttt{d}

\texttt{e.nodeName} returns the tag name of Element \texttt{e}

\texttt{e.attributes} returns a NamedNodeMap containing \texttt{e}'s attributes
 - Attributes are not considered children!
 - Loop through attributes using
 \begin{verbatim}
 for i in range(e.attributes.length):
 a = e.attributes.item(i)
 \end{verbatim}
 - \texttt{a.nodeName} returns the attribute name
 - \texttt{a.nodeValue} returns the attribute value
 - Given \texttt{e}, \texttt{e.hasAttribute(name)}, \texttt{e.getAttribute(name)}, \texttt{e.setAttribute(name,value)} are also available

\texttt{t.nodeValue} returns the content of Text \texttt{t}

For convenience: \texttt{n.parentNode}, \texttt{n.previousSibling}, \texttt{n.nextSibling}, \texttt{n.ownerDocument}, etc.
Constructing DOM from XML

```python
import sys
reload(sys)
sys.setdefaultencoding('utf-8')
from xml.dom.minidom import parse

dom = parse(sys.stdin)
# now print it back out:
print dom.toprettyxml(indent=' '*4, encoding='utf-8')
```

Hack to ensure Unicode I/O
Traversing DOM

• Compute the string value of an XML node

```python
def nodeToString(n):
    # string value of a Text node is just its content:
    if n.nodeType == n.TEXT_NODE:
        return n.nodeValue;
    # string value of a Node of another type is the
    # concatenation of its children’s string values:
    return ''.join(
        nodeToString(child)
        for child in n.childNodes
    )
```

Traversing DOM

• Print out text contents of title elements

```python
def outputTitle(n):
    if n.nodeType == n.ELEMENT_NODE and n.nodeName == 'title':
        print nodeToString(n);
    else:
        for child in n.childNodes:
            outputTitle(child)
}
```

• How do you print out just //book/section/title?
 • Use parentNode to check for section parent and book grandparent
Constructing DOM from scratch

• Construct a DOM Document showing all titles as follows:

```xml
<result>
  <title text="title1"/>
  <title text="title2"/>
... 
</result>
```

```python
from xml.dom.minidom import getDOMImplementation

def addTitles(n, newdoc):
    if n.nodeType == input.ELEMENT_NODE and
       n.nodeName == 'title':
        e = newdoc.createElement('title')
        e.setAttribute('text', nodeToString(n))
        newdoc.documentElement.appendChild(e)
    else:
        for child in n.childNodes:
            addTitles(child, newdoc)

newdom = getDOMImplementation().
    createDocument(None, 'result', None)
addTitles(dom, newdom)
```
Copying subtrees in DOM

• Construct a DOM Document showing all title elements from the input XML

```python
def addTitles2(n, newdoc):
    if n.nodeType == input.ELEMENT_NODE and n.nodeName == 'title':
        e = newdoc.importNode(n, True)
        newdoc.documentElement.appendChild(e)
    else:
        for child in n.childNodes:
            addTitles2(child, newdoc)

newdom = getDOMImplementation().
createDocument(None, 'result', None)
addTitles2(dom, newdom)
```

A Document can import (copy) a Node from another element; the second argument specifies whether to copy recursively or not.
Summary: SAX versus DOM

• SAX
 • Because of one-pass processing, a SAX parser is fast, consumes very little memory
 • Applications are responsible for keeping necessary state in memory, and are therefore more difficult to code

• DOM
 • Because the input XML needs to be converted to an in-memory DOM-tree representation, a DOM parser consumes more memory
 • Lazy materialization of DOM tree helps alleviate this problem
 • Applications are easier to develop because of the powerful DOM interface

• Which one scales better for huge XML input?