Query Processing

Introduction to Databases
CompSci 316 Fall 2015
Announcements (Tue., Nov. 10)

• **Homework #4** assigned today; due on 12/01
• Project milestone #2 feedback to be emailed by this weekend
Overview

• Many different ways of processing the same query
 • Scan? Sort? Hash? Use an index?
 • All have different performance characteristics and/or make different assumptions about data

• Best choice depends on the situation
 • Implement all alternatives
 • Let the query optimizer choose at run-time
Notation

• Relations: R, S
• Tuples: r, s
• Number of tuples: $|R|, |S|$
• Number of disk blocks: $B(R), B(S)$
• Number of memory blocks available: M
• Cost metric
 • Number of I/O’s
 • Memory requirement
Scanning-based algorithms
Table scan

• Scan table R and process the query
 • Selection over R
 • Projection of R without duplicate elimination

• I/O’s: $B(R)$
 • Trick for selection: stop early if it is a lookup by key

• Memory requirement: 2

• Not counting the cost of writing the result out
 • Same for any algorithm!
 • Maybe not needed—results may be pipelined into another operator
Nested-loop join

\[R \bowtie_p S \]

• For each block of \(R \), and for each \(r \) in the block:
 For each block of \(S \), and for each \(s \) in the block:
 Output \(rs \) if \(p \) evaluates to true over \(r \) and \(s \)
• \(R \) is called the outer table; \(S \) is called the inner table
• I/O’s: \(B(R) + |R| \cdot B(S) \)
• Memory requirement: 3

Improvement: block-based nested-loop join

• For each block of \(R \), for each block of \(S \):
 For each \(r \) in the \(R \) block, for each \(s \) in the \(S \) block: ...
• I/O’s: \(B(R) + B(R) \cdot B(S) \)
• Memory requirement: same as before
More improvements

• Stop early if the key of the inner table is being matched

• Make use of available memory
 • Stuff memory with as much of R as possible, stream S by, and join every S tuple with all R tuples in memory

• I/O’s: $B(R) + \left[\frac{B(R)}{M-2} \right] \cdot B(S)$
 • Or, roughly: $B(R) \cdot B(S) / M$

• Memory requirement: M (as much as possible)

• Which table would you pick as the outer?
Sorting-based algorithms

http://en.wikipedia.org/wiki/Mail_sorter#mediaviewer/File:Mail_sorting,1951.jpg
External merge sort

Remember (internal-memory) merge sort?
Problem: sort R, but R does not fit in memory

- **Pass 0**: read M blocks of R at a time, sort them, and write out a level-0 run

- **Pass 1**: merge $(M - 1)$ level-0 runs at a time, and write out a level-1 run

- **Pass 2**: merge $(M - 1)$ level-1 runs at a time, and write out a level-2 run

...
- **Final pass** produces one sorted run
Toy example

- 3 memory blocks available; each holds one number
- Input: 1, 7, 4, 5, 2, 8, 3, 6, 9
- Pass 0
 - 1, 7, 4 → 1, 4, 7
 - 5, 2, 8 → 2, 5, 8
 - 9, 6, 3 → 3, 6, 9
- Pass 1
 - 1, 4, 7 + 2, 5, 8 → 1, 2, 4, 5, 7, 8
 - 3, 6, 9
- Pass 2 (final)
 - 1, 2, 4, 5, 7, 8 + 3, 6, 9 → 1, 2, 3, 4, 5, 6, 7, 8, 9
Analysis

• **Pass 0**: read \(M \) blocks of \(R \) at a time, sort them, and write out a level-0 run
 • There are \(\left\lfloor \frac{B(R)}{M} \right\rfloor \) level-0 sorted runs

• **Pass \(i \)**: merge \((M - 1)\) level-(\(i - 1\)) runs at a time, and write out a level-\(i\) run
 • \((M - 1)\) memory blocks for input, 1 to buffer output
 • \# of level-\(i\) runs = \(\left\lfloor \frac{\# \text{ of level-}(i-1) \text{ runs}}{M-1} \right\rfloor \)

• **Final pass** produces one sorted run
Performance of external merge sort

- Number of passes: \[\log_{M-1} \left(\frac{B(R)}{M} \right) + 1 \]

- I/O’s
 - Multiply by \(2 \cdot B(R) \): each pass reads the entire relation once and writes it once
 - Subtract \(B(R) \) for the final pass
 - Roughly, this is \(O(B(R) \times \log_M B(R)) \)

- Memory requirement: \(M \) (as much as possible)
Some tricks for sorting

• Double buffering
 • Allocate an additional block for each run
 • Overlap I/O with processing
 • Trade-off: smaller fan-in (more passes)

• Blocked I/O
 • Instead of reading/writing one disk block at time, read/write a bunch (“cluster”)
 • More sequential I/O’s
 • Trade-off: larger cluster → smaller fan-in (more passes)
Sort-merge join

\[R \bowtie_{R.A=S.B} S \]

• Sort \(R \) and \(S \) by their join attributes; then merge
 \(r, s \) = the first tuples in sorted \(R \) and \(S \)
 Repeat until one of \(R \) and \(S \) is exhausted:
 If \(r.A > s.B \) then \(s = \) next tuple in \(S \)
 else if \(r.A < s.B \) then \(r = \) next tuple in \(R \)
 else output all matching tuples, and
 \(r, s = \) next in \(R \) and \(S \)

• I/O’s: sorting + \(2B(R) + 2B(S) \)
 • In most cases (e.g., join of key and foreign key)
 • Worst case is \(B(R) \cdot B(S) \): everything joins
Example of merge join

R:
- \(r_1.A = 1 \)
- \(r_2.A = 3 \)
- \(r_3.A = 3 \)
- \(r_4.A = 5 \)
- \(r_5.A = 7 \)
- \(r_6.A = 7 \)
- \(r_7.A = 8 \)

S:
- \(s_1.B = 1 \)
- \(s_2.B = 2 \)
- \(s_3.B = 3 \)
- \(s_4.B = 3 \)
- \(s_5.B = 8 \)

R \(\bowtie_{R.A=S.B} \) S:
- \(r_1s_1 \)
- \(r_2s_3 \)
- \(r_2s_4 \)
- \(r_3s_3 \)
- \(r_3s_4 \)
- \(r_7s_5 \)
Optimization of SMJ

• Idea: combine join with the (last) merge phase of merge sort
• **Sort**: produce sorted runs for R and S such that there are fewer than M of them total
• **Merge and join**: merge the runs of R, merge the runs of S, and merge-join the result streams as they are generated!

![Diagram of SMJ optimization](image)
Performance of SMJ

• If SMJ completes in two passes:
 • I/O’s: \(3 \cdot (B(R) + B(S))\)
 • Memory requirement
 • We must have enough memory to accommodate one block from each run: \(M > \frac{B(R)}{M} + \frac{B(S)}{M}\)
 • \(M > \sqrt{B(R) + B(S)}\)

• If SMJ cannot complete in two passes:
 • Repeatedly merge to reduce the number of runs as necessary before final merge and join
Other sort-based algorithms

• Union (set), difference, intersection
 • More or less like SMJ

• Duplication elimination
 • External merge sort
 • Eliminate duplicates in sort and merge

• Grouping and aggregation
 • External merge sort, by group-by columns
 • Trick: produce “partial” aggregate values in each run, and combine them during merge
 • This trick doesn’t always work though
 • Examples: SUM(DISTINCT ...), MEDIAN(...)
Hashing-based algorithms

Hash join

\[R \bowtie_{R.A=S.B} S \]

- **Main idea**
 - Partition \(R \) and \(S \) by hashing their join attributes, and then consider corresponding partitions of \(R \) and \(S \)
 - If \(r.A \) and \(s.B \) get hashed to different partitions, they don’t join

- **Diagram**
 - Nested-loop join considers all slots
 - Hash join considers only those along the diagonal!
Partitioning phase

• Partition R and S according to the same hash function on their join attributes
Probing phase

• Read in each partition of R, stream in the corresponding partition of S, join
 • Typically build a hash table for the partition of R
 • Not the same hash function used for partition, of course!

For each S tuple, probe and join
Performance of (two-pass) hash join

• If hash join completes in two passes:
 • I/O’s: \(3 \cdot (B(R) + B(S)) \)
 • Memory requirement:
 • In the probing phase, we should have enough memory to fit one partition of \(R \): \(M - 1 > \frac{B(R)}{M-1} \)
 • \(M > \sqrt{B(R)} + 1 \)
 • We can always pick \(R \) to be the smaller relation, so:
 \[M > \sqrt{\min(B(R), B(S)) + 1} \]
Generalizing for larger inputs

• What if a partition is too large for memory?
 • Read it back in and partition it again!
 • See the duality in multi-pass merge sort here?
Hash join versus SMJ

(Assuming two-pass)
• I/O’s: same
• Memory requirement: hash join is lower
 \[\sqrt{\min(B(R), B(S))} + 1 < \sqrt{B(R) + B(S)} \]
 • Hash join wins when two relations have very different sizes
• Other factors
 • Hash join performance depends on the quality of the hash
 • Might not get evenly sized buckets
 • SMJ can be adapted for inequality join predicates
 • SMJ wins if \(R \) and/or \(S \) are already sorted
 • SMJ wins if the result needs to be in sorted order
What about nested-loop join?

• May be best if many tuples join
 • Example: non-equality joins that are not very selective

• Necessary for black-box predicates
 • Example: WHERE user_defined_pred(R.A, S.B)
Other hash-based algorithms

• Union (set), difference, intersection
 • More or less like hash join

• Duplicate elimination
 • Check for duplicates within each partition/bucket

• Grouping and aggregation
 • Apply the hash functions to the group-by columns
 • Tuples in the same group must end up in the same partition/bucket
 • Keep a running aggregate value for each group
 • May not always work
Duality of sort and hash

- Divide-and-conquer paradigm
 - Sorting: physical division, logical combination
 - Hashing: logical division, physical combination
- Handling very large inputs
 - Sorting: multi-level merge
 - Hashing: recursive partitioning
- I/O patterns
 - Sorting: sequential write, random read (merge)
 - Hashing: random write, sequential read (partition)
Index-based algorithms

http://il.trekearth.com/photos/28820/p2270994.jpg
Selection using index

• Equality predicate: $\sigma_{A=v}(R)$
 • Use an ISAM, B$^+$-tree, or hash index on $R(A)$

• Range predicate: $\sigma_{A>v}(R)$
 • Use an ordered index (e.g., ISAM or B$^+$-tree) on $R(A)$
 • Hash index is not applicable

• Indexes other than those on $R(A)$ may be useful
 • Example: B$^+$-tree index on $R(A, B)$
 • How about B$^+$-tree index on $R(B, A)$?
Index versus table scan

Situations where index clearly wins:

• **Index-only queries** which do not require retrieving actual tuples

 • Example: \(\pi_A(\sigma_{A>v}(R)) \)

• Primary index clustered according to search key

 • One lookup leads to all result tuples in their entirety
Index versus table scan (cont’d)

BUT(!):

• Consider $\sigma_{A > \nu}(R)$ and a secondary, non-clustered index on $R(A)$
 • Need to follow pointers to get the actual result tuples
 • Say that 20% of R satisfies $A > \nu$
 • Could happen even for equality predicates
• I/O’s for index-based selection: lookup + 20% $|R|$
• I/O’s for scan-based selection: $B(R)$$\bullet$ Table scan wins if a block contains more than 5 tuples!
Index nested-loop join

\[R \bowtie_{R.A=S.B} S \]

- Idea: use a value of \(R.A \) to probe the index on \(S(B) \)
- For each block of \(R \), and for each \(r \) in the block:
 Use the index on \(S(B) \) to retrieve \(s \) with \(s.B = r.A \)
 Output \(rs \)
- I/O’s: \(B(R) + |R| \cdot (\text{index lookup}) \)
 - Typically, the cost of an index lookup is 2-4 I/O’s
 - Beats other join methods if \(|R|\) is not too big
 - Better pick \(R \) to be the smaller relation
- Memory requirement: 3
Zig-zag join using ordered indexes

\[R \bowtie_{R.A=S.B} S \]

- Idea: use the ordering provided by the indexes on \(R(A) \) and \(S(B) \) to eliminate the sorting step of sort-merge join
- Use the larger key to probe the other index
 - Possibly skipping many keys that don’t match
Summary of techniques

• Scan
 • Selection, duplicate-preserving projection, nested-loop join

• Sort
 • External merge sort, sort-merge join, union (set), difference, intersection, duplicate elimination, grouping and aggregation

• Hash
 • Hash join, union (set), difference, intersection, duplicate elimination, grouping and aggregation

• Index
 • Selection, index nested-loop join, zig-zag join