Query Optimization

Introduction to Databases
CompSci 316 Fall 2015
Announcements (Thu., Nov. 19)

• Homework #4 due on 12/01
• Project demos 12/3-12/9
 • Sign-ups to begin next week
Query optimization

• One logical plan → “best” physical plan

• Questions
 • How to enumerate possible plans
 • How to estimate costs
 • How to pick the “best” one

• Often the goal is not getting the optimum plan, but instead avoiding the horrible ones

Any of these will do

1 second 1 minute 1 hour
Plan enumeration in relational algebra

- Apply relational algebra equivalences
 - Join reordering: \times and \bowtie are associative and commutative (except column ordering, but that is unimportant)
More relational algebra equivalences

• Convert $\sigma_p \times$ to/from \bowtie_p: $\sigma_p (R \times S) = R \bowtie_p S$
• Merge/split σ’s: $\sigma_{p_1} (\sigma_{p_2} R) = \sigma_{p_1 \land p_2} R$
• Merge/split π’s: $\pi_{L_1} (\pi_{L_2} R) = \pi_{L_1} R$, where $L_1 \subseteq L_2$
• Push down/pull up σ: $\sigma_{p \land p_r \land p_s} (R \bowtie_{p'} S) = (\sigma_{p_r} R) \bowtie_{p \land p'} (\sigma_{p_s} S)$, where
 - p_r is a predicate involving only R columns
 - p_s is a predicate involving only S columns
 - p and p' are predicates involving both R and S columns
• Push down π: $\pi_{L} (\sigma_p R) = \pi_{L} \left(\sigma_p (\pi_{L'} R) \right)$, where
 - L' is the set of columns referenced by p that are not in L
• Many more (seemingly trivial) equivalences...
 - Can be systematically used to transform a plan to new ones
Relational query rewrite example

\[\pi_{\text{Group.name}} \sigma_{\text{User.name} = \text{“Bart”} \land \text{User.uid} = \text{Member.uid} \land \text{Member.gid} = \text{Group.gid}} \]

Push down \(\sigma \)

\[\pi_{\text{Group.name}} \sigma_{\text{User.uid} = \text{Member.uid}} \times \text{Member} \]

Convert \(\sigma_{p \times} \) to \(\bowtie_p \)

\[\pi_{\text{Group.name}} \bowtie_p \text{Member.gid} = \text{Group.gid} \]

\[\sigma_{\text{name} = \text{“Bart”}} \]

\[\pi_{\text{Group.name}} \sigma_{\text{User.uid} = \text{Member.uid}} \times \text{Member} \]

\[\sigma_{\text{name} = \text{“Bart”}} \]

\[\pi_{\text{Group.name}} \bowtie_p \text{Member.gid} = \text{Group.gid} \]

\[\times \text{Group} \]

\[\bowtie_p \text{User.uid} = \text{Member.uid} \]

\[\text{Member} \]

\[\sigma_{\text{name} = \text{“Bart”}} \]

\[\text{User} \]
Heuristics-based query optimization

• Start with a logical plan
• Push selections/projections down as much as possible
 • Why? Reduce the size of intermediate results
 • Why not? May be expensive; maybe joins filter better
• Join smaller relations first, and avoid cross product
 • Why? Reduce the size of intermediate results
 • Why not? Size depends on join selectivity too
• Convert the transformed logical plan to a physical plan (by choosing appropriate physical operators)
SQL query rewrite

• More complicated—subqueries and views divide a query into nested “blocks”
 • Processing each block separately forces particular join methods and join order
 • Even if the plan is optimal for each block, it may not be optimal for the entire query

• Unnest query: convert subqueries/views to joins

☞ We can just deal with select-project-join queries
 • Where the clean rules of relational algebra apply
SQL query rewrite example

• SELECT name
 FROM User
 WHERE uid = ANY (SELECT uid FROM Member);

• SELECT name
 FROM User, Member
 WHERE User.uid = Member.uid;
 • Wrong—consider two Bart’s, each joining two groups

• SELECT name
 FROM (SELECT DISTINCT User.uid, name
 FROM User, Member
 WHERE User.uid = Member.uid);
 • Right—assuming User.uid is a key
Dealing with correlated subqueries

- SELECT gid FROM Group
 WHERE name LIKE 'Springfield%'
 AND min_size > (SELECT COUNT(*) FROM Member
 WHERE Member.gid = Group.gid);

- SELECT gid
 FROM Group, (SELECT gid, COUNT(*) AS cnt
 FROM Member GROUP BY gid) t
 WHERE t.gid = Group.gid AND min_size > t.cnt
 AND name LIKE 'Springfield%';

 - New subquery is inefficient (it computes the size for every group)
 - Suppose a group is empty?
“Magic” decorrelation

- SELECT gid FROM Group
 WHERE name LIKE 'Springfield%
 AND min_size > (SELECT COUNT(*) FROM Member
 WHERE Member.gid = Group.gid);

- WITH Supp_Group AS (SELECT * FROM Group WHERE name LIKE 'Springfield%'),
 Magic AS (SELECT DISTINCT gid FROM Supp_Group),
 DS AS ((SELECT Group.gid, COUNT(*) AS cnt
 FROM Magic, Member WHERE Magic.gid = Member.gid
 GROUP BY Member.gid) UNION
 (SELECT gid, 0 AS cnt
 FROM Magic WHERE gid NOT IN (SELECT gid FROM Member)))

SELECT Supp_Group.gid FROM Supp_Group, DS
WHERE Supp_Group.gid = DS.gid
AND min_size > DS.cnt;

Process the outer query without the subquery
(SEELECT * FROM Group WHERE name LIKE 'Springfield%'),

Collect bindings

Evaluate the subquery with bindings

Finally, refine the outer query
Heuristics- vs. cost-based optimization

- **Heuristics-based optimization**
 - Apply heuristics to rewrite plans into cheaper ones

- **Cost-based optimization**
 - **Rewrite** logical plan to combine “blocks” as much as possible
 - **Optimize** query block by block
 - Enumerate logical plans (already covered)
 - Estimate the cost of plans
 - Pick a plan with acceptable cost

- **Focus**: select-project-join blocks
Cost estimation

Physical plan example:

We have: cost estimation for each operator
 - Example: \(\text{SORT}(gid) \) takes \(O(B(\text{input}) \times \log_M B(\text{input})) \)
 - But what is \(B(\text{input}) \)?
 - We need: size of intermediate results
Cardinality estimation

http://www.learningresources.com/product/estimation+station.do
Selections with equality predicates

- \(Q: \sigma_{A=v} R \)

- Suppose the following information is available
 - Size of \(R \): \(|R|\)
 - Number of distinct \(A \) values in \(R \): \(|\pi_A R|\)

- Assumptions
 - Values of \(A \) are uniformly distributed in \(R \)
 - Values of \(v \) in \(Q \) are uniformly distributed over all \(R \). \(A \) values

- \(|Q| \approx \frac{|R|}{|\pi_A R|}\)
 - Selectivity factor of \((A = v)\) is \(\frac{1}{|\pi_A R|} \)
Conjunctive predicates

• $Q: \sigma_{A=u} \land B=v R$

• Additional assumptions
 • $(A = u)$ and $(B = v)$ are independent
 • Counterexample: major and advisor
 • No “over”-selection
 • Counterexample: A is the key

• $|Q| \approx \frac{|R|}{|\pi_A R| \cdot |\pi_B R|}$
 • Reduce total size by all selectivity factors
Negated and disjunctive predicates

• $Q: \sigma_{A \neq v} R$
 • $|Q| \approx |R| \cdot \left(1 - \frac{1}{|\pi_{AR}|}\right)$
 • Selectivity factor of $\neg p$ is $\left(1 - \text{selectivity factor of } p\right)$

• $Q: \sigma_{A = u \lor B = v} R$
 • $|Q| \approx |R| \cdot \left(\frac{1}{|\pi_{AR}|} + \frac{1}{|\pi_{BR}|} \right)$?
 • No! Tuples satisfying $(A = u)$ and $(B = v)$ are counted twice
 • $|Q| \approx |R| \cdot \left(\frac{1}{|\pi_{AR}|} + \frac{1}{|\pi_{BR}|} - \frac{1}{|\pi_{AR}| \cdot |\pi_{BR}|}\right)$
 • Inclusion-exclusion principle
Range predicates

- \(Q: \sigma_{A>v} R \)
- Not enough information!
 - Just pick, say, \(|Q| \approx |R| \cdot \frac{1}{3}\)
- With more information
 - Largest R.A value: \(\text{high}(R.A) \)
 - Smallest R.A value: \(\text{low}(R.A) \)
 - \(|Q| \approx |R| \cdot \frac{\text{high}(R.A) - v}{\text{high}(R.A) - \text{low}(R.A)}\)
- In practice: sometimes the second highest and lowest are used instead
 - The highest and the lowest are often used by inexperienced database designer to represent invalid values!
Two-way equi-join

• \(Q: R(A, B) \bowtie S(A, C) \)

• Assumption: containment of value sets
 • Every tuple in the “smaller” relation (one with fewer distinct values for the join attribute) joins with some tuple in the other relation
 • That is, if \(|\pi_A R| \leq |\pi_A S|\) then \(\pi_A R \subseteq \pi_A S\)
 • Certainly not true in general
 • But holds in the common case of foreign key joins

• \(|Q| \approx \frac{|R| \cdot |S|}{\max(|\pi_A R|, |\pi_A S|)}\)
 • Selectivity factor of \(R. A = S. A\) is \(\frac{1}{\max(|\pi_A R|, |\pi_A S|)}\)
Multiway equi-join

• $Q: R(A, B) \bowtie S(B, C) \bowtie T(C, D)$
• What is the number of distinct C values in the join of R and S?
• Assumption: preservation of value sets
 • A non-join attribute does not lose values from its set of possible values
 • That is, if A is in R but not S, then $\pi_A(R \bowtie S) = \pi_A R$
 • Certainly not true in general
 • But holds in the common case of foreign key joins (for value sets from the referencing table)
Multiway equi-join (cont’d)

• Q: $R(A, B) \bowtie S(B, C) \bowtie T(C, D)$

• Start with the product of relation sizes
 • $|R| \cdot |S| \cdot |T|$

• Reduce the total size by the selectivity factor of each join predicate
 • $R \cdot B = S \cdot B$: $\frac{1}{\max(|\pi_B R|, |\pi_B S|)}$
 • $S \cdot C = T \cdot C$: $\frac{1}{\max(|\pi_C S|, |\pi_C T|)}$
 • $|Q| \approx \frac{|R| \cdot |S| \cdot |T|}{\max(|\pi_B R|, |\pi_B S|) \cdot \max(|\pi_C S|, |\pi_C T|)}$
Cost estimation: summary

• Using similar ideas, we can estimate the size of projection, duplicate elimination, union, difference, aggregation (with grouping)

• Lots of assumptions and very rough estimation
 • Accurate estimate is not needed
 • Maybe okay if we overestimate or underestimate consistently
 • May lead to very nasty optimizer “hints”

 SELECT * FROM User WHERE pop > 0.9;
 SELECT * FROM User WHERE pop > 0.9 AND pop > 0.9;

• Not covered: better estimation using histograms
Search strategy

http://1.bp.blogspot.com/-Motdu8reRKs/TgyAi4ki5QI/AAAAAAAANE/mi8ejfZ8S7U/s1600/cornMaze.jpg
Search space

• Huge!
• “Bushy” plan example:

\[
R_2 \Join R_1 \Join R_3 \Join R_4 \Join R_5
\]

• Just considering different join orders, there are
\[
\frac{(2n-2)!}{(n-1)!}
\]
bushy plans for \(R_1 \Join \cdots \Join R_n \)

 • 30240 for \(n = 6 \)

• And there are more if we consider:
 • Multiway joins
 • Different join methods
 • Placement of selection and projection operators
Left-deep plans

• Heuristic: consider only “left-deep” plans, in which only the left child can be a join
 • Tend to be better than plans of other shapes, because many join algorithms scan inner (right) relation multiple times—you will not want it to be a complex subtree

• How many left-deep plans are there for \(R_1 \bowtie \cdots \bowtie R_n \)?
 • Significantly fewer, but still lots—\(n! \) (720 for \(n = 6 \))
A greedy algorithm

- \(S_1, ..., S_n \)
 - Say selections have been pushed down; i.e., \(S_i = \sigma_p(R_i) \)
- Start with the pair \(S_i, S_j \) with the smallest estimated size for \(S_i \bowtie S_j \)
- Repeat until no relation is left:
 Pick \(S_k \) from the remaining relations such that the join of \(S_k \) and the current result yields an intermediate result of the smallest size

Current subplan

\(S_k \)

Pick most efficient join method

Minimize expected size

Remaining relations to be joined

\(..., S_k, S_l, S_m, ... \)
A dynamic programming approach

• Generate optimal plans bottom-up
 • Pass 1: Find the best single-table plans (for each table)
 • Pass 2: Find the best two-table plans (for each pair of tables) by combining best single-table plans
 • ...
 • Pass k: Find the best k-table plans (for each combination of k tables) by combining two smaller best plans found in previous passes
 • ...

• Rationale: Any subplan of an optimal plan must also be optimal (otherwise, just replace the subplan to get a better overall plan)

☞ Well, not quite...
The need for “interesting order”

• Example: \(R(A, B) \bowtie S(A, C) \bowtie T(A, D) \)

• Best plan for \(R \bowtie S \): hash join (beats sort-merge join)

• Best overall plan: sort-merge join \(R \) and \(S \), and then sort-merge join with \(T \)

 • Subplan of the optimal plan is not optimal!

• Why?

 • The result of the sort-merge join of \(R \) and \(S \) is sorted on \(A \)

 • This is an interesting order that can be exploited by later processing (e.g., join, dup elimination, GROUP BY, ORDER BY, etc.).

Dealing with interesting orders

When picking the best plan

• Comparing their costs is not enough
 • Plans are not totally ordered by cost anymore

• Comparing interesting orders is also needed
 • Plans are now partially ordered
 • Plan X is better than plan Y if
 • Cost of X is lower than Y, and
 • Interesting orders produced by X “subsume” those produced by Y

• Need to keep a set of optimal plans for joining every combination of k tables
 • At most one for each interesting order
Summary

• Relational algebra equivalence
• SQL rewrite tricks
• Heuristics-based optimization
• Cost-based optimization
 • Need statistics to estimate sizes of intermediate results
 • Greedy approach
 • Dynamic programming approach