Please fill out our course eval on ACES!

DENIAL ANGER BARGAINING

WHAT THE...? THESE WHO SATID THESE
ARENT EVEN MY THINGS ABOUT ME?!
OBJECTIVES!

SEVEN STAGES OF A
PERFORMANCE REVIEW

WHAT IF I MAKE
SOMEONE WRITE A
GLOWING E-MAIL
ABOUT ME?

ITS TIME.

DEPRESSION ACCEPTANCE TRASH-TALKING

MORALE SLIPPING WHATEVER. THERE S .. .LJOOL-COVERED : A FALAFEL
AWAY .. .HAIR. .. NO BUDGET FOR PILE OF IGNORANT WOULD HIT
S0...LIMP. RAISES ANYWAY. THE SPOT.

MONKEY SPIT. [~

-
<
-

Aifey €2003 United Fealure Syndcals, Inc.




Final Review

Introduction to Databases
CompSci 316 Fall 2015

E' DUKE
COMPUTER SCIENCE



Announcements (Tue., Dec. 1)

e Remember on ACES!

due today
(Gradiance) due tomorrow
to be posted by Thursday

start Thursday
* Schedule to be finalized tonight
* Submit yourreport and code by your demo slot

Wednesday 7-10pm
* Open-book, open-notes
 Focuses onthe second half of the course

* No communication or Internet use (besides accessing
materials on the course website)

posted



Relational basics

* Relational model + query languages: physical data
independence

* Relation algebra (set semantics)
* SQL (bag semantics by default)

* Schema design

* Entity-relationship design
* Theory (FD’s, MVD’s, BNCF, 4NF): help eliminate
redundancy



More about SQL

* NULL and three-valued logic: nifty but messy

* Bag vs. set: beware of broken equivalences

« SELECT-FROM-WHERE (SPJ)

* Grouping, aggregation, ordering

* Subqueries (including correlated ones)

* Modifications

* Constraints: the more you know the better

* Triggers (ECA): “active” data

* Index: reintroduce redundancy for performance
* Transactions and isolationlevels



XML

 Data model: well-formed vs. DTD vs. XML Schema

* Query languages:
 XPath: (branching) path expressions (with conditions)
* Be careful about the semantics of overloaded operators on sets

* XQuery: FLWOR, subqueries inreturn (restructuring output),
quantified expressions, aggregation, ordering

e XSLT: structural recursion with templates
* Programming: SAX (streaming) vs. DOM (in-memory)

e Relational vs. XML

* Tables vs. hierarchies

 Highly structured/typed vs. less

* Join vs. path traversals

* Storing XML as relations: various mapping methods



Physical data organization

» Storage hierarchy (DC vs. Pluto): so count I/Os!

* Hard drives: geometry — three components of
access cost;random vs. sequential I/O

 Solid state drives: faster, but still far slower than
memory; also block-oriented access

* Data layout

* Access paths (indexing)

* Primary vs. secondary; sparse vs. dense
* Tree-based indexes: ISAM, B*-tree
* Big fan-out: do as much as you can with one 1/O

* Again, reintroduce redundancy to improve performance,
but keep in mind the query vs. update cost trade-off



Query processing & optimization

* Processing

* Scan-, sort-, hash-, and index-based algorithms
* Do as much as you can with each I/O
* Manage memory very carefully

* Pipelined execution vs. materialization
* Optimization (or “goodification”)
* Heuristics: push selections down; smaller joins first
* Reduce the size of intermediate results

e Cost-based

* Query rewrite: de-correlate and merge query blocks to expand
search space

* Cost estimation: comes down to estimating size of intermediate
results; statistics + assumptions

* Search algorithms: greedy vs. dynamic programming (with
interesting orders)



Transaction processing

* ACID

* Concurrency control

e Serial and conflict-serializable scheduled
* Locking-based: 2PL and strict 2PL

* Recovery with logging
* Steal: requires undo logging
* No force: requires redo logging
* WAL: log holds the truth
* Fuzzy checkpointing



