
Decision Making for Robots 	

and Autonomous Systems

Fall 2015

George Konidaris	

gdk@cs.duke.edu

mailto:gdk@cs.duke.edu

Recall! Policy Iteration
General policy improvement framework:	

1. Start with a policy 	

2. Learn 	

3. Improve 	

a. 	

!

π

Qπ

π

π(s) = max
a

Q(s, a),∀s
Repeat

This is known as policy iteration. 	

It is guaranteed to converge to the optimal policy.	

!
Steps 2 and 3 can be interleaved as rapidly as you like.	

Usually, perform 3a every time step.

Sarsa
Sarsa: very simple algorithm	

!
1. Initialize Q(s, a)	

2. For n episodes	

• observe transition 	

• compute TD error 	

• update Q: 	

• select and execute action based on Q

(s, a, r, s
′
, a

′)
δ = r + γQ(s′, a′) − Q(s, a)

Q(s, a) = Q(s, a) + αδ

Sarsa Demo …

Q-Learning
Alternative to Sarsa	

• Don’t use the transition you experienced	

• Use the greedy transition	

 	

!
!
!
!

Q(s, a) = Q(s, a) + ↵
h
Q(s, a)� (r + �max

a0
Q(s0, a0))

i

Q-Learning
!
!
1. Initialize Q(s, a)	

2. For n episodes	

• observe transition 	

• compute TD error 	

• update Q: 	

• select and execute action based on Q

Q(s, a) = Q(s, a) + αδ

(s, a, r, s0)
� = r + �max

a0
Q(s0, a0)�Q(s, a)

Off-Policy
This is off-policy:	

• Learning Q for a policy you are not executing.	

• Why might you want to do this?	

!
Example: epsilon greedy up to a point, then you switch epsilon off.	

!
Off policy algorithms allow you to use one policy to gather
samples, and learn V/Q for another policy.

Off-Policy
Why might you not want to do this …

Recall: TD(λ)
Weighted sum:	

!
!
 .	

 .	

 .	

!
!
!
!
Estimator:	

!

R(1) = r0 + �V (s1)
R(2) = r0 + �r1 + �2V (s2)

R(n) =
n�1X

i=0

�iri + �nV (sn)

1
�

�n

weights

TD(λ): Implementation
Each state has eligibility trace e(s).	

!
At time t:	

	

 e(st) = 1 (replacing traces)	

 e(s) = γλe(s), for all other s.	

!
When updating:	

• Compute 𝛿 as before	

• Q(s, a) = Q(s, a) + α𝛿e(s)

Sarsa(λ) Demo …

