COMPSCI590.07 Algorithmic Aspects of Machine Learning Assignment 2

Due Date: October 22, 2015 in class.

Problem 1 (Mixture of Gaussians). Let $X \in \mathbb{R}^d$ be a random vector that is drawn from a mixture of Gaussians. More precisely, there are k ($k \ll d$) Gaussian components, each with a center μ_i ($i \in \{1, 2, ..., k\}$). The random variable X is sampled as

 $X \sim \mathcal{N}(\mu_i, \sigma^2 I)$ with probability 1/k.

That is, first pick one of the k Gaussians uniformly, and then sample X from that Gaussian distribution. All the Gaussians have the same spherical covariance matrix $\sigma^2 I$ (σ^2 is known).

Given n samples $X_1, X_2, ..., X_n$, let $A \in \mathbb{R}^{d \times n}$ be the matrix whose *i*-th column is equal to X_i . Let $C \in \mathbb{R}^{d \times n}$ be the (unknown) matrix whose *i*-th column is equal to the center for X_i .

- (a) (5 points) How large is the spectral norm $||A C||_2$? Your answer should be correct up to a constant factor with high probability. (Hint: By random matrix theory, a $d \times n$ matrix with independent standard Gaussian entries has spectral norm $\Theta(\sqrt{\min\{d,n\}})$).
- (b) (10 points) Suppose the centers μ_i 's are orthogonal to each other, and $\|\mu_i\|_2 = 1$ for all *i*. When $n \gg k \log k$ how large is the smallest nonzero singular value $\sigma_{min}(C)$? Show your answer is correct (up to constant factor) with high probability.
- (c) (5 points) Let U be the column span of C, and \hat{U} be the column span of the best rank-k approximation of A. Show that under the assumption of (b), when $n \ge d \gg k \log k$ and $\sigma \ll 1/\sqrt{k}$, the distance between U and \hat{U} (measured in principal angle) is $O(\sigma\sqrt{k})$. (Hint: Use Wedin's Theorem).

Theorem 1 (Wedin's Theorem, Theorem 4.4, p. 262 in Stewart and Sun (1990)). Let $A, E \in \mathbb{R}^{m \times n}$ with $m \ge n$. Suppose A has singular value decomposition

$$\begin{bmatrix} U_1^\top \\ U_2^\top \\ U_3^\top \end{bmatrix} A[V_1 \quad V_2] = \begin{bmatrix} \Sigma_1 & 0 \\ 0 & \Sigma_2 \\ 0 & 0 \end{bmatrix}.$$

Let $\tilde{A} := A + E$, with analogous singular value decomposition $(\tilde{U}_1, \tilde{U}_2, \tilde{U}_3, \tilde{V}_1, \tilde{V}_2, \tilde{\Sigma}_1, \tilde{\Sigma}_2)$. Let $\delta > 0$ be the minimum of $\min_{i,j} |\Sigma_1[i, i] - \Sigma_2[j, j]|$ and $\min_i \Sigma_1[i, i]$, if $\delta \ge 4 ||E||_2$ then the distance between U and \tilde{U} (measured in principal angle) is bounded by $O(||E||_2/\delta)$.

Figure 1: A Noisy-Or Network

Problem 2 (Tensor Basics). Consider the following tensor

$$T = \left(\left(\begin{array}{cc} 3 & 1 \\ 1 & 3 \end{array} \right), \left(\begin{array}{cc} 1 & 3 \\ 3 & 1 \end{array} \right) \right).$$

- (a) (5 points) Write out the polynomial T(x, x, x) where $x = (x_1, x_2) \in \mathbb{R}^2$ as a sum of monomials.
- (b) (5 points) Use Jenrich's algorithm to decompose T. In particular, let $M_1 = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$, $M_2 = \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix}$, do simultaneous diagonalization for M_1 and M_2 . Finally write T as a sum

of rank 1 tensors (use as few rank 1 tensors as possible).

Problem 3 (Noisy-Or Networks). Consider a probabilistic model for diseases and symptoms. There are *n* possible diseases and *m* symptoms. We use variables $d_1, d_2, ..., d_n \in \{0, 1\}$ for diseases $(d_i = 1 \text{ means the patient has the disease})$, and $s_1, ..., s_m \in \{0, 1\}$ for symptoms $(s_i = 1 \text{ means the patient has the symptom})$.

For each disease, there is a probability $p_i (i \in \{1, 2, ..., n\})$ that the patient has the disease, and all diseases are independent. The diseases and symptoms are connected by a weighted bipartite graph G = (D, S, E) (see Figure 1), on each edge the weight $q_{i,j}$ represents the probability of a disease causing a symptom.

Each symptom may be caused by multiple diseases, and the probability of a symptom is

$$\Pr[s_j = 0 | d_1, d_2, ..., d_n] = \prod_{(i,j) \in E} (1 - d_i q_{i,j}).$$

This is called a "noisy-or" network, because if all the edge weights are 1, then s_j is just the logical or of all the diseases.

In this problem we consider a very simple network. There are only 4 diseases and 3 symptoms. Disease d_4 causes all 3 symptoms. Disease d_i for i = 1, 2, 3 causes only symptom s_i .

(a) (10 points) Let $T_{i,j,k}(i, j, k \in \{0, 1\})$ be a $2 \times 2 \times 2$ tensor, whose i, j, k-th entry is equal to $\Pr[s_1 = i, s_2 = j, s_3 = k]$. Show that the tensor has rank (at most) 2. (Hint: Conditioned on d_4, s_1, s_2, s_3 are independent.)

(b) (10 points) Suppose all the conditional probabilities are in (0,1), and the probabilities of diseases are also in (0,1). Given a decomposition for tensor T as $T = \lambda_1 u_1 \otimes v_1 \otimes w_1 + \lambda_2 u_2 \otimes v_2 \otimes w_2$, where $u_1, u_2, v_1, v_2, w_1, w_2 \in \mathbb{R}^2$ are unit vectors and λ_1, λ_2 are real numbers, describe an algorithm that can compute the conditional probabilities $q_{4,j}$ for j = 1, 2, 3.

(Hint: The tensor decomposition is unique up to scaling and swapping the two components. The main difficulty is to find the correct scaling for the components u, v, w, and decide a correct ordering for the two components.)