COMPSCI590.07 Algorithmic Aspects of Machine Learning Assignment 2

Due Date: October 22, 2015 in class.

Problem 1 (Mixture of Gaussians). Let $X \in \mathbb{R}^{d}$ be a random vector that is drawn from a mixture of Gaussians. More precisely, there are $k(k \ll d)$ Gaussian components, each with a center μ_{i} $(i \in\{1,2, \ldots, k\})$. The random variable X is sampled as

$$
X \sim \mathcal{N}\left(\mu_{i}, \sigma^{2} I\right) \quad \text { with probability } 1 / k
$$

That is, first pick one of the k Gaussians uniformly, and then sample X from that Gaussian distribution. All the Gaussians have the same spherical covariance matrix $\sigma^{2} I$ (σ^{2} is known).

Given n samples $X_{1}, X_{2}, \ldots, X_{n}$, let $A \in \mathbb{R}^{d \times n}$ be the matrix whose i-th column is equal to X_{i}. Let $C \in \mathbb{R}^{d \times n}$ be the (unknown) matrix whose i-th column is equal to the center for X_{i}.
(a) (5 points) How large is the spectral norm $\|A-C\|_{2}$? Your answer should be correct up to a constant factor with high probability. (Hint: By random matrix theory, a $d \times n$ matrix with independent standard Gaussian entries has spectral norm $\Theta(\sqrt{\min \{d, n\}}))$.
(b) (10 points) Suppose the centers μ_{i} 's are orthogonal to each other, and $\left\|\mu_{i}\right\|_{2}=1$ for all i. When $n \gg k \log k$ how large is the smallest nonzero singular value $\sigma_{\min }(C)$? Show your answer is correct (up to constant factor) with high probability.
(c) (5 points) Let U be the column span of C, and \hat{U} be the column span of the best rank- k approximation of A. Show that under the assumption of (b), when $n \geq d \gg k \log k$ and $\sigma \ll 1 / \sqrt{k}$, the distance between U and \hat{U} (measured in principal angle) is $O(\sigma \sqrt{k})$. (Hint: Use Wedin's Theorem).

Theorem 1 (Wedin's Theorem, Theorem 4.4, p. 262 in Stewart and Sun (1990)). Let $A, E \in \mathbb{R}^{m \times n}$ with $m \geq n$. Suppose A has singular value decomposition

$$
\left[\begin{array}{c}
U_{1}^{\top} \\
U_{2}^{\top} \\
U_{3}^{\top}
\end{array}\right] A\left[\begin{array}{ll}
V_{1} & V_{2}
\end{array}\right]=\left[\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & \Sigma_{2} \\
0 & 0
\end{array}\right] .
$$

Let $\tilde{A}:=A+E$, with analogous singular value decomposition $\left(\tilde{U}_{1}, \tilde{U}_{2}, \tilde{U}_{3}, \tilde{V}_{1}, \tilde{V}_{2}, \tilde{\Sigma}_{1}, \tilde{\Sigma}_{2}\right)$. Let $\delta>0$ be the minimum of $\min _{i, j}\left|\Sigma_{1}[i, i]-\Sigma_{2}[j, j]\right|$ and $\min _{i} \Sigma_{1}[i, i]$, if $\delta \geq 4\|E\|_{2}$ then the distance between U and \tilde{U} (measured in principal angle) is bounded by $O\left(\|E\|_{2} / \delta\right)$.

Figure 1: A Noisy-Or Network

Problem 2 (Tensor Basics). Consider the following tensor

$$
T=\left(\left(\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right),\left(\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right)\right)
$$

(a) (5 points) Write out the polynomial $T(x, x, x)$ where $x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ as a sum of monomials.
(b) (5 points) Use Jenrich's algorithm to decompose T. In particular, let $M_{1}=\left(\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right)$, $M_{2}=\left(\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right)$, do simultaneous diagonalization for M_{1} and M_{2}. Finally write T as a sum of rank 1 tensors (use as few rank 1 tensors as possible).
Problem 3 (Noisy-Or Networks). Consider a probabilistic model for diseases and symptoms. There are n possible diseases and m symptoms. We use variables $d_{1}, d_{2}, \ldots, d_{n} \in\{0,1\}$ for diseases ($d_{i}=1$ means the patient has the disease), and $s_{1}, \ldots, s_{m} \in\{0,1\}$ for symptoms ($s_{i}=1$ means the patient has the symptom).

For each disease, there is a probability $p_{i}(i \in\{1,2, \ldots, n\})$ that the patient has the disease, and all diseases are independent. The diseases and symptoms are connected by a weighted bipartite graph $G=(D, S, E)$ (see Figure 1), on each edge the weight $q_{i, j}$ represents the probability of a disease causing a symptom.

Each symptom may be caused by multiple diseases, and the probability of a symptom is

$$
\operatorname{Pr}\left[s_{j}=0 \mid d_{1}, d_{2}, \ldots, d_{n}\right]=\prod_{(i, j) \in E}\left(1-d_{i} q_{i, j}\right) .
$$

This is called a "noisy-or" network, because if all the edge weights are 1 , then s_{j} is just the logical or of all the diseases.

In this problem we consider a very simple network. There are only 4 diseases and 3 symptoms. Disease d_{4} causes all 3 symptoms. Disease d_{i} for $i=1,2,3$ causes only symptom s_{i}.
(a) (10 points) Let $T_{i, j, k}(i, j, k \in\{0,1\})$ be a $2 \times 2 \times 2$ tensor, whose i, j, k-th entry is equal to $\operatorname{Pr}\left[s_{1}=i, s_{2}=j, s_{3}=k\right]$. Show that the tensor has rank (at most) 2. (Hint: Conditioned on $d_{4}, s_{1}, s_{2}, s_{3}$ are independent.)
(b) (10 points) Suppose all the conditional probabilities are in (0,1), and the probabilities of diseases are also in $(0,1)$. Given a decomposition for tensor T as $T=\lambda_{1} u_{1} \otimes v_{1} \otimes w_{1}+\lambda_{2} u_{2} \otimes$ $v_{2} \otimes w_{2}$, where $u_{1}, u_{2}, v_{1}, v_{2}, w_{1}, w_{2} \in \mathbb{R}^{2}$ are unit vectors and λ_{1}, λ_{2} are real numbers, describe an algorithm that can compute the conditional probabilities $q_{4, j}$ for $j=1,2,3$.
(Hint: The tensor decomposition is unique up to scaling and swapping the two components. The main difficulty is to find the correct scaling for the components u, v, w, and decide a correct ordering for the two components.)

