COMPSCI590.07 Algorithmic Aspects of Machine Learning Assignment 3

Due Date: November 17, 2015 in class.

Problem 1 (Stochastic Gradient Descent). In this problem we will try to analyze stochastic gradient descent algorithm for strongly convex functions.

Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a L-smooth, μ-strongly convex function with optimal point at x^{*}. In particular

$$
\left\langle\nabla f(x), x-x^{*}\right\rangle \geq \frac{\mu}{2}\left\|x-x^{*}\right\|_{2}^{2}+\frac{1}{2 L}\|\nabla f(x)\|_{2}^{2}
$$

We will try to optimize this function by running a stochastic gradient descent algorithm:

```
Algorithm 1 Stochastic Gradient Descent
    for \(t=0\) to \(k-1\) do
        \(x^{(t+1)}=x^{(t)}-\eta_{t}\left(\nabla f\left(x^{(t)}\right)+\epsilon_{t}\right)\).
    end for
```

In the algorithm, η_{t} is a step size that we will choose later. The vector $\nabla f\left(x^{(t)}\right)+\epsilon_{t}$ is a stochastic gradient for f at $x^{(t)}$, in particular, ϵ_{t} is a random variable that only depends on $x^{(t)}$, and for every x

$$
\begin{equation*}
\mathbb{E}[\epsilon \mid x]=0, \mathbb{E}\left[\|\epsilon\|_{2}^{2} \mid x\right] \leq \sigma^{2} \tag{1}
\end{equation*}
$$

(a) (5 points) Suppose $\nabla f(x)+\epsilon$ is a stochastic gradient for f at x that satisfies Equation (11). Show that

$$
\mathbb{E}\left[\|\nabla f(x)+\epsilon\|_{2}^{2}\right]=\|\nabla f(x)\|_{2}^{2}+\sigma^{2} .
$$

(b) (5 points) Let $r_{t}=\mathbb{E}\left[\left\|x^{(t)}-x^{*}\right\|_{2}^{2}\right]$, show that when $\eta \leq \frac{1}{L}$,

$$
r_{t+1} \leq(1-\eta \mu) r_{t}+\eta^{2} \sigma^{2}
$$

(Hint: Consider $r_{t+1}=\mathbb{E}\left[\left\|\left(x^{(t)}-x_{*}\right)-\eta\left(\nabla f\left(x^{(t)}\right)+\epsilon_{t}\right)\right\|_{2}^{2}\right]$, and expand out the square.)
(c) (5 points) Show that when $r_{t} \geq \frac{2 \sigma^{2}}{\mu L}$, we can choose $\eta_{t}=\frac{1}{L}$, and get $r_{t+1} \leq\left(1-\frac{\mu}{2 L}\right) r_{t}$.
(d) (10 points) Suppose $r_{t_{0}}=\frac{4 \sigma^{2}}{\mu^{2} k}$ for some integer k, and $k \geq \frac{2 L}{\mu}$. Show that we can choose η_{t} appropriately to ensure $r_{t_{0}+t} \leq \frac{4 \sigma^{2}}{\mu^{2}(k+t)}$ for all integer $t>0$.
(Hint: The bound in (b) is quadratic in η, optimize that to get a good choice of step size.)

