Example
POMDPs

More formally, a POMDP is:
- S, a set of states
- A, a set of actions
- T, transition function
- R, reward function
- γ, discount factor
- Ω, set of observations
- O, observation function $O(\omega_t|s_t)$
POMDPs

s changes

a

$O(s) \ r$
Belief State

Probability distribution over states $b(s)$:

- Estimate state using observations
- Update based on observations
- Distribution represents state uncertainty
- Take action based on distribution

$$b(s_t) = P(s_t | o_t, o_{t-1}, a_{t-1}, \ldots, o_0, a_0)$$

Use a filter to update $b(s)$ at every time step.
Belief State

Let's examine how we update $b(s)$:

$$b(s_{t+1}) \propto O(o_{t+1} | s_{t+1}) \sum_{s \in S} T(s_{t+1} | s, a_t) b(s)$$

... and also, what is the expected reward when taking an action?

$$\hat{r}(a_t) = \sum_{s \in S} b(s = s_t) \sum_{s' \in S} b(s' = s_{t+1} | s = s_t, a_t) R(s, a_t, s')$$

Notice anything?
The Belief MDP

Belief state updates are a *transition function*.

Expected rewards are a *reward function*.

Both of these, for time $t+1$, depend only on $b(s_t)$.

Therefore they satisfy the Markov property.

We can build an MDP, called the belief MDP,

- Markov even though underlying POMDP not
- Solving this as MDP solves the POMDP problem
Example

Reward Function
- Penalty for wrong opening: -100
- Reward for correct opening: +10
- Cost for listening action: -1

Observations
- to hear the tiger on the left (TL)
- to hear the tiger on the right (TR)

Actions = {0: listen, 1: open-left, 2: open-right}

S0
“tiger-left"
Pr(o=TL | S0, listen)=0.85
Pr(o=TR | S1, listen)=0.15

S1
“tiger-right"
Pr(o=TL | S0, listen)=0.15
Pr(o=TR | S1, listen)=0.85

(picture from Timmer, Intro to POMDPs)
More Formally

A belief MDP consists of a tuple \((B, A, \tau, r, \gamma) \):

- \(B \) is the set of belief states.
- \(A \) is the action set
- \(\tau \) is the belief state transition function
- \(r \) is the belief reward function
- \(\gamma \) is the discount factor

Of these, \(A \) and \(\gamma \) are taken directly from the originating POMDP, and the definition of \(B \) follows from it.

Must define \(\tau \) and \(r \), which requires using stuff from the original POMDP.
Defining Transition and Reward

So:

\[\tau : P(b'|b, a) = \sum_o P(b'|b, a, o) P(o|b, a) \]

belief state update

observation model

\[\hat{r}(a_t) = \sum_{s \in S} b(s = s_t) \sum_{s' \in S} b(s' = s_{t+1}|s = s_t, a_t) R(s, a_t, s') \]
Planning in Belief Space

(images courtesy of Rob Platt)
Planning in Belief Space

"dark"

"light"

start

goal
Belief-Space Planning

We can use any MDP solver we like to solve the system.

[Platt et al., RSS 2010]
Belief-Space Planning

[Platt 2011]
Belief-Space Planning

Entropy: 8.98720

Create Plan