PFTFWoN

● Search trees, analysis, recurrences
 - Analyzing recursive methods typically means we'll use a recurrence equation/relation
 - Solve once, re-use solution 😊

● Writing Binary Tree code with APT system
 - Avoiding Practice-it, using the idea
 - How do input a tree? Output a tree?

● Applications of "trees"
Review
Tree functions

- **Compute height of a tree, what is complexity?**
 - **Length of longest root-to-leaf path**

  ```java
  int height(Tree root) {
      if (root == null) return 0;
      else {
          return 1 + Math.max(height(root.left),
                                height(root.right));
      }
  }
  ```

- **Modify function to compute number of nodes in a tree, does complexity change?**
 - **What about computing number of leaf nodes?**
Balanced Trees and Complexity

- A tree is height-balanced if
 - Left and right subtrees are height-balanced
 - Left and right heights differ by at most one

```java
boolean isBalanced(Tree root){
    if (root == null) return true;
    return
        isBalanced(root.left) && isBalanced(root.right) &&
        Math.abs(height(root.left) - height(root.right)) <= 1;
}
```
What is complexity?

- Assume trees “balanced” in analyzing complexity
 - Roughly half the nodes in each subtree
 - Leads to easier analysis

- **How to develop recurrence relation?**
 - What is $T(n)$? Time $func$ executes on n-node tree
 - What other work? Express recurrence, solve it

- **How to solve recurrence relation**
 - Plug, expand, plug, expand, find pattern
 - Proof requires induction to verify correctness
Recurrence relation

● Let $T(n)$ be time for height to execute (n-node tree)
 - $T(n) = T(n/2) + T(n/2) + O(1)$
 - $T(n) = 2 \cdot T(n/2) + 1$
 - $T(n) = 2 \cdot [2 \cdot (T(n/4) + 1) + 1$
 - $T(n) = 4 \cdot T(n/4) + 2 + 1$
 - $T(n) = 8 \cdot T(n/8) + 4 + 2 + 1$, eureka!
 - $T(n) = 2^k \cdot T(n/2^k) + 2^k-1$ why is this true?
 - $T(n) = n \cdot T(1) + O(n)$ is $O(n)$, if we let $n=2^k$

● Let $T(n)$ be time for isBalanced on n-node tree
 - $T(n) = 2 \cdot T(n/2) + O(n)$, why? Solution?
Recurrence relation

- \(T(n) \): time for `isBalanced` to execute (n-node tree)
 - \(T(n) = T(n/2) + T(n/2) + O(n) \)
 - \(T(n) = 2 \ T(n/2) + n \)
 - \(T(n) = 2 \ [2 \ (T(n/4) + n/2)] + n \)
 - \(T(n) = 4T(n/4) + n + n = 4T(n/4) + 2n \)
 - \(T(n) = 8T(n/8) + 3n, \quad \text{eureka!} \)
 - \(T(n) = 2^kT(n/2^k) + kn \quad \text{why is this true?} \)
 - \(T(n) = nT(1) + n \ \log(n) \quad \text{let } n=2^k, \text{ so } k=\log n \)

- So, solution for \(T(n) = 2T(n/2) + O(n) \) is
 - \(O(n \log n) \quad -- \text{base 2, but base doesn't matter} \)
Recurrence Summary

<table>
<thead>
<tr>
<th>Recurrence</th>
<th>Algorithm</th>
<th>complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = T(n/2) + O(1)$</td>
<td>Binary Search</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>$T(n) = T(n-1) + O(1)$</td>
<td>Sequential Search</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>$T(n) = 2T(n/2) + O(1)$</td>
<td>Tree traversal</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>Quicksort</td>
<td>$O(n \log n)$</td>
</tr>
<tr>
<td>$T(n) = T(n-1) + O(n)$</td>
<td>Selection Sort</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>$T(n) = 2T(n-1) + O(1)$</td>
<td>Towers of Hanoi</td>
<td>$O(2^n)$</td>
</tr>
</tbody>
</table>

- **$T(n)$**: time is labeled, n is size of input
 - Typically we say $T(1)$ is $O(1)$ in solving recurrence.
How do we verify? How do we analyze?

- $[1,2,2,3,3,3,4,4,4,4,...,7,7,7,7,7,7,7,7]$
- Correctness and Performance: *Complexity?*

```java
public Node createGaussList(int n){
    if (n == 1) return new Node(1,null);

    Node first = createGaussList(n-1);
    Node last = first;
    while (last.next != null){
        last = last.next;
    }
    last.next = createNlist(n);
    return first;
}
```
Doubly Linked Lists

- Why do we have some lists with nodes to previous and next nodes?
 - Easier to write code, don't need before, current, after ... https://en.wikipedia.org/wiki/Doubly_linked_list
 - See examples in Recitation

- Used in Java through Java 7 for HashMap
- Still used in LinkedList, easy traversal from front or back, also LinkedHashSet
 - See DNA LinkStrand with singly linked list
LinkedHashMap in code

- http://grepcode.com/file/repository.grepcod... LinkedHashMap.java?av=f

- Note that each hash "bucket" uses a search tree to store (key,value) pairs where keys have same hashcode
 - Search tree nodes linked using doubly-linked list with before and after pointers
We'll review solutions to recurrences, but this is about constructing the recurrences
Lynn Conway

See Wikipedia and lynnconway.com

- **Joined Xerox Parc in 1973**
 - Revolutionized VLSI design with Carver Mead

- **Joined U. Michigan 1985**
 - Professor and Dean, retired '98

- **NAE '89, IEEE Pioneer '09**

- **Helped invent dynamic scheduling early '60s IBM**
 - Transgender, fired in '68
https://git.cs.duke.edu/201fall16/set-examples/tree/master

- **What about ISimpleSet interface**
 - How does this compare to java.util?
 - What about Java source? Can we look at it?

- **What does a simple implementation look like?**
 - What are complexity repercussions: add, contains
 - What about iterating?

- **Scenarios where linked lists better?**
 - Consider N adds and M contains operations
 - Move to front heuristic?
What does insertion look like?

- Simple recursive insertion into tree (accessed by root)

 root = insert("foo", root);

TreeNode insert(TreeNode t, String s) {
 if (t == null) t = new Tree(s,null,null);
 else if (s.compareTo(t.info) <= 0)
 t.left = insert(t.left,s);
 else
 t.right = insert(t.right,s);
 return t;
}
Notes on tree insert and search

- **Note:** in each recursive `insert` call, the parameter `t` in the called clone is either the left or right pointer of some node in the original tree
 - Why is this important?
 - The idiom `t = treeMethod(t, ...)` used

- **When good trees go bad, what happens and why?**
 - Insert alpha, beta, gamma, delta, epsilon, ...
 - Where does gamma go?
 - Can we avoid this case? Yes!
 - What to prefer? Long/stringy or short/bushy
Removal from tree?

● For insertion we can use iteration (see BSTSet)
 – Look below, either left or right
 • If null, stop and add
 • Otherwise go left when <=, else go right when >

● Removal is tricky, depends on number of children
 – Straightforward when zero or one child
 – Complicated when two children, find successor
 • See set code for complete cases
 • If right child, straightforward
 • Otherwise find node that's left child of its parent (why?)
Balanced Trees

- In average case, trees are $O(\log n)$ for searching in a binary search tree
 - If tree is full (see picture) or complete (last row being filled in) we get $O(\log n)$
- Insertion/Deletion algorithms that "adjust"
 - Ensure trees good in worst-case
- AVL tree, Red-Black Tree
 - Similar, Red-Black in TreeMap
- 2-3 Trees or 2-3-4 Trees
 - Leaves in file system?
Writing Tree, Serializing Tree

- Conventional wisdom: need two traversals to uniquely identify tree

 - https://en.wikipedia.org/wiki/Tree_traversal

![Trees having Preorder, Postorder and Level-Order and traversals](image)
Given Inorder and Preorder

- Suppose we have a search tree, we know in-order
 - Are there more trees with these values?
 - Are these search trees?
Construct tree given pre-order?

1. Given 7, 4, 1, 3, 6, 13, 8, 10, 14
 - Knowing it's a search tree: what's root? Left child of root? Right child of root?

2. If we implement the algorithm developed, what will complexity be? How do we reason about this?
 - $T(n) = \ldots$
 - What are sub-problems?
 - What work before we do subproblems?
Label null nodes, pre-order is unique

- What is the tree (not a search tree) with pre-order
 - $5, 9, x, 4, 7, x, x, x, 2, 8, x, 3, x, x, 6, 1, x, x, 10, x, x$
 - What is root? Why?
 - What's the left-subtree, how do we "stop" scanning the traversal?

- Given a tree of N nodes, how many x's are there?
 - How do reason about this?
 - Is this traversal "wasteful" in storing nulls?
Solving APTs with Trees, aka TAPT

- Using a TreeNode class in the code you write

- Let's work on some of these to see how the process works, then do more in recitation as a way of preparing for both AutoComplete and Huffman coding and for tests

- Write by hand, debug with your mind, test with your computer