
Page 1 of 5

CompSci 316 Fall 2016: Homework #2
100 points (8.75% of course grade) + 10 points extra credit
Assigned: Tuesday, September 20
Due: Tuesday, October 4

This homework should be done in parts as soon as relevant topics are covered in lectures. If you wait until
the last minute, you might be overwhelmed.

For Problems 1, 2, 4, 6, and 7, you will need to use Gradiance. Access Gradiance via the “Gradiance” link on
the course website. There is no need to turn in anything else for these problems; your scores will be tracked
automatically.

For other problems, you will need to turn in the required files electronically. Please read the “Help →
Submitting Non-Gradiance Work” section of the course website for instructions. When submitting your
work, make sure you select the correct course and homework. Multiple submissions are okay, but please
upload all required files in each resubmission.

Problems 3, 5, and X2 must be completed on your course VM. Before you start, make sure you refresh your
VM, by logging into your VM and issuing the following command:
 /opt/dbcourse/sync.sh

Problem 1 (4 points)
Complete the Gradiance homework titled “Homework 2.1 (Relational Design Theory: MVD).”

Problem 2 (12 points)
Complete the Gradiance homework titled “Homework 2.2 (SQL Querying).”

Problem 3 (36 points)
Consider again the beer drinker’s database from Homework #1. Key columns are underlined.

Drinker(name, address)
Bar(name, address)
Beer(name, brewer)
Frequents(drinker, bar, times_a_week)
Likes(drinker, beer)
Serves(bar, beer, price)

Write the following queries in SQL. To set up the sample database called beers (even if you have set it up
previously, you should repeat this process to refresh it), issue this command in your VM shell:
 /opt/dbcourse/examples/db-beers/setup.sh

Page 2 of 5

Then, type “psql beers” to run PostgreSQL’s interpreter. For additional tips, see “Help → PostgreSQL
Tips” on the course website.

When you run psql, as soon as you get a working solution, record the query in a plain-text file named 3-
query.sql (use “--” to add comments in the file to indicate which problems they correspond to). When
you are done with all queries, run
 psql beers -af 3-queries.sql &> 3-answers.txt
to verify that everything works and to generate the final answers. Submit the files 3-queries.sql and 3-
answers.txt electronically. If you cannot get a query to parse correctly or return the right answer, include
your best attempt and explain it in comments, to earn possible partial credit.

Note: In order to ensure that your queries work in all cases, consider testing them on different database instances. The example
instance we provide may not reveal subtle errors, e.g., failing to return a drinker who does not frequent any bar for (f). Feel free to
modify the given database for testing, but make sure that you generate 3-answers.txt for submission from the given,
unmodified database.

(a) Find names of beers served at James Joyce Pub.
(b) Find names and addresses of bars that serve some beer for less than $2.25. Don’t return duplicates.
(c) Find names of bars serving some beer Amy likes for no more than $2.50. Don’t return duplicates.
(d) Find pairs of drinkers who like the same beer. (Just list the drinker names, not the beer. Don’t list

(drinkerA, drinkerA). If you list (drinkerA, drinkerB) in the answer, don’t list (drinkerB, drinkerA) again.)
(e) Find names of all drinkers who like Dixie but frequent none of the bars serving it.
(f) For each drinker, show the bar that he or she frequents the most, along with the number of visits per

week. If multiple bars tie for the most frequented by the drinker, list all of them. You need to list
every drinker, even if this drinker does not frequent any bar (show NULL for bar and times per week
in this case).

(g) Find names of all drinkers who frequent only those bars that serve some beers they like.
(h) Find names of all drinkers who frequent every bar that serves some beers they like.
(i) For each bar, find the total number of drinkers who frequent it, as well as the average price of beers

it serves. Sort the output by the number of drinkers (in descending order). You need to list every bar,
even if it is not frequented by anyone (show 0 as the total number of drinkers in this case) or serves
no beers (show NULL as average price in this case).

Problem 4 (8 points)
Complete the Gradiance homework titled “Homework 2.4 (SQL Constraints).”

Problem 5 (30 points)
Recall Problem 4 of Homework #1. Here is a relational design:

Species (name, attack, defense, stamina, evolves_from)
Pokemon (id, name, level, attack, defense, stamina, species, quick_move, charged_move, trainer_id, favorite)
Move (name, damage, cooldown, type, energy)
Trainer (id, nickname, exp)

Page 3 of 5

Your job is to complete and test an implementation of the above schema design for a SQL database. To get
started, copy the template to your working directory:
 cp /opt/dbcourse/assignments/hw2/5-create.sql .
(Don’t miss the trailing dot, which represents the current directory.)

Use the following command to run the file with a fresh new database called cars:
 dropdb pokemon; createdb pokemon; psql pokemon -af 5-create.sql

The file 5-create.sql is actually incomplete. You need to edit it to fill in the missing parts. Use simple
SQL constructs as much as possible, and only those supported by PostgreSQL. Note that:

• PostgreSQL does not allow subqueries in CHECK.
• PostgreSQL does not support CREATE ASSERTION.
• You might need some SQL math functions. For syntax and examples, see

http://www.postgresql.org/docs/9.5/static/functions-math.html.
• PostgreSQL’s implementation of triggers deviates slightly from the standard. In particular, you will

need to define a “UDF” (user-defined function) to execute as the trigger body. For syntax and
examples, see http://www.postgresql.org/docs/9.5/static/plpgsql-trigger.html.

Your job involves the following tasks (note that some of the constraints below are new from Homework #1).
You may modify the CREATE statements in the file as you see fit, but do not introduce new columns, tables,
views, or triggers unless instructed otherwise.

(a) Enforce key and foreign key constraints implied by the description in Homework #1.
(b) Enforce that trainers have unique nick names (a new constraint).
(c) Enforce that all species base attack, defense, and stamina values are greater than 0, and that all

individual Pokemon attack, defense, and stamina values are between 0 and 15 (inclusive).
(d) Enforce that if a Pokemon is not owned by a trainer (i.e., Pokemon.trainer is NULL), then it cannot be

favorited/un-favorited (i.e., Pokemon.favorite must be NULL as well). Furthermore, if a Pokemon is
owned by a trainer, then Pokemon.favorite must be either “t” or “f” (true or false, respectively).

(e) Using triggers, enforce that Pokemon.quick_move and Pokemon.charged_move indeed refer to moves of the
correct types, respectively.

(f) Write an INSERT statement that fails because a Pokemon refers to a non-existent move.
(g) Write an INSERT statement that fails because of violating (b).
(h) Write two INSERT statements that fail because of violating constraints in (c) on Species and Pokemon,

respectively.
(i) Write two UPDATE statements that fail because of violating the two cases under (d), respectively.
(j) Write an INSERT statement that fails because of violating (e).
(k) Write an UPDATE Move statement that fails because of violating (e).
(l) Define a view that lists, for each Pokemon, its combat power (CP), defined as follows:

o 𝑎 = base attack (Species.attack) + individual attack (Pokemon.attack);
o 𝑑 = base defense (Species.defense) + individual defense (Pokemon.defense);
o 𝑠 = base stamina (Species.stamina) + individual stamina (Pokemon.stamina);
o 𝑚 = 0.095 +× Pokemon.level;
o CP = max 10, 0.1𝑚𝑎 𝑑𝑠 . Here, ⋅ is the floor function.

Page 4 of 5

When you are all done, run
 dropdb pokemon; createdb pokemon; psql pokemon -af 5-create.sql &> 5-out.txt
to verify that everything works and to generate the final answers. Submit the files 5-create.sql and 5-
out.txt electronically. If you cannot get a statement to work correctly, include your best attempt and
explain it in comments, to earn possible partial credit.

Problem 6 (4 points)
Complete the Gradiance homework titled “Homework 2.6 (SQL Recursion).”

Problem 7 (6 points)
Complete the Gradiance homework titled “Homework 2.7 (SQL Triggers, Views).”

Extra Credit Problem X1 (5 points)
Write a program to implement the “chase” procedure. Your program should read from the standard input the
following specification (for example):

A, B, C, D
fd: A, B, C: D
fd: D: A
mvd: A, B: C
chase: fd: A: C, D

The first line declares the list of attributes in the relation of interest. The attribute names are strings separated
by commas; the names are unique.

Next, there may be any number of lines specifying the given dependencies. Each line specifies either a
functional dependency (fd:) or a multivalued dependency (mvd:). The left- and right-hand sides of the
dependency are separated by a colon, and both sides must specify valid attributes declared by the first line,
separated by commas.

The last line of the input, starting with chase:, specifies the target dependency that we want to prove or
disprove, in the same format as that of the given dependencies.

Your program should output either a proof of the target dependency or a counterexample showing that the
target dependency does not hold. The output format is flexible but should be text that is human-readable.

You can use any programming language. Submit your code and a plain-text x1-README.txt file that
explains how to run (and compile, if necessary) your program.

Page 5 of 5

Extra Credit Problem X2 (5 points)
Continuing with Problem 5, further modify the SQL file to carry out the following tasks:

(a) Using triggers, enforce that no species can evolve (directly or indirectly) into itself.
(b) Write an INSERT statement that fails for violating (a).
(c) Write an UPDATE statement that fails for violating (a).

Create files x1-create.sql and x1-out.txt (analogously to 5-create.sql and 5-out.txt in
Problem 5) and submit them electronically.

