
Page 1 of 4

CompSci 316 Fall 2016: Homework #3
100 points (8.75% of course grade) + 20 points extra credit
Assigned: Thursday, October 20
Due: Tuesday, November 8

This homework should be done in parts as soon as relevant topics are covered in lectures. If you wait until
the last minute, you might be overwhelmed.

For Problem 1, you will need to use Gradiance. Access Gradiance via the “Gradiance” link on the course
website. There is no need to turn in anything else for these problems; your scores will be tracked
automatically.

For other problems, you will need to turn in the required files electronically. Please read the “Help →
Submitting Non-Gradiance Work” section of the course website for instructions. When submitting your
work, make sure you select the correct course and homework. Multiple submissions are okay, but please
upload all required files in each resubmission.

Problems 2, 3, X1, and X2 should be completed on your course VM. Before you start, make sure you refresh
your VM, by logging into your VM and issuing the following command:
 /opt/dbcourse/sync.sh

Problem 1 (15 points)
Complete the Gradiance homework titled “Homework 3.1 (XML).”

Problem 2 (55 points)
In /opt/dbcourse/assignments/hw3/ on your VM, you will find an XML file congress.xml
containing information about the current (114th) US Congress. Logically, the file consists of two sections:

• Each person element under congress/people stores information about a legislator, including
the roles he or she has served in the Congress. A role with type “rep” indicates a Representative
(member of the House), while a role with type “sen” indicates a Senator (member of the Senate).
A role is current if its current attribute equals 1.

• Each committee element under congress/committees stores information about a committee.
It has a list of members, whose ids reference those of person elements in the first section; role
specifies the role of the member in the committee (e.g., chair or ranking member). Oftentimes a
committee can be divided into subcommittees. Each subcommittee element has its own list of
members, which should be a subset of the committee members. A legislator can serve on multiple
committees, and even multiple subcommittees under the same committee.

o Note that there are some “dangling” person references from under
congress/committees. Representative Mark Takai passed away in May 2016;
Representative Ed Whitfield resigned in September 2016. But they still remained on some
committee rosters.

Page 2 of 4

Please refer to the document “XML Tips” on the course Web site for instructions on running saxonb-
xquery, the Saxon XQuery processor. Write queries in XQuery to answer the following questions. Because
Saxon does not use any indexes and does not have a sophisticated optimizer, query performance may be
heavily influenced by the way you write your queries. If a particular query takes forever to run, consider
reordering loops and evaluating selections (filters) as early as possible. Note that you can add comments to
your queries by enclosing them in “(:” and “:)”.

For each question below, say (a), write your XQuery in a file named 2a.xq, and generate the output file
2a.xml by running
saxonb-xquery -s /opt/dbcourse/assignments/hw3/congress.xml 2a.xq > 2a.xml

Turn in all your .xq and output .xml files.

(a) Find all legislators whose name ends with “Price”. (For each of them, simply print the entire
person element.) You can use ends-with(str1, str2) to test if str1 ends with str2.

(b) Find the legislator who serves as the role of “Chairman” on the Senate Select Committee on
Intelligence (code name “SLIN”). Simply print the entire person element.

(c) List all current female Senators born before 1940. Format each of them as an element of the form
<senator name="…"/>. You can use xs:date("1939-12-31") < xs:date("1940-01-01") to
test if the date 1939-12-31 precedes the date 1940-01-01.

(d) List the name, district, and party of each current Representative of NC. Format each of them as an
element of the form <representative name="…" district="…" party="…"/> and sort them
according to the district.

(e) List the names of current Senators who at some point also served as Representatives. Format each
of them as an element of the form <member>…</member>.

(f) Find the number of current Representatives for each party. For each party, format the output as an
element of the form <record count="…" party="…"/>.

(g) List the names of legislators who are NOT serving in any committee or subcommittee. Format
each of them as an element for the form <person>…</person>.

Problem 3 (30 points)
Continuing from the last problem, your job is to produce an output XML file percom.xml, which presents
information about legislators and their committee assignments in a more concise and readable form. The
output file should be structured as follows, and conform to the DTD in
/opt/dbcourse/assignments/hw3/percom.dtd.

• The root element is congress.
• congress has two child elements: house and senate, each listing its current legislators. See the

description of congress.xml above for how to determine who are current members of the two
chambers.

• Each legislator is represented as a person element, with a name attribute whose value is taken from
person/@name in congress.xml. Under person, list each committee that this legislator serves
in as a committee element. A committee element has a name attribute whose value is taken from
committee/@displayname in congress.xml; it also has a role attribute whose value is taken
from member/@role (or simply “Member” if no role is specified). Under committee, list each

Page 3 of 4

subcommittee of the committee that this legislator serves in, as a subcommittee element. Like a
committee element, a subcommittee has a name attribute and a role attribute.

For example, here is a snippet of the output showing the committee assignment for Bernie:

<?xml version="1.0" encoding="UTF-8"?>
<congress>
 <house>
 …
 </house>
 <senate>
 …
 <person name="Bernard Sanders">
 <committee name="Senate Committee on the Budget" role="Ranking Member"/>
 <committee name="Senate Committee on Energy and Natural Resources" role="Member">
 <subcommittee name="Water and Power" role="Member"/>
 <subcommittee name="National Parks" role="Member"/>
 <subcommittee name="Energy" role="Member"/>
 </committee>
 <committee name="Senate Committee on Environment and Public Works" role="Member">
 <subcommittee name="Clean Air and Nuclear Safety" role="Member"/>
 <subcommittee name="Transportation and Infrastructure" role="Member"/>
 <subcommittee name="Fisheries, Water, and Wildlife" role="Member"/>
 </committee>
 <committee name="Senate Committee on Health, Education, Labor, and Pensions" role="Member">
 <subcommittee name="Primary Health and Retirement Security" role="Ranking Member"/>
 <subcommittee name="Children and Families" role="Member"/>
 </committee>
 <committee name="Senate Committee on Veterans' Affairs" role="Member"/>
 </person>
 …
 </senate>
</congress>

To generate percom.xml from congress.xml, you have the following options:

(a) Write a Python program using SAX API (xml.sax).
(b) Write a Python program using DOM API (xml.dom).
(c) Write an XQuery.
(d) Write an XSLT program.

Your code should handle any potential dangling references mentioned in the last problem. Please refer to the
document “XML Tips” on the course website for instructions on how to write and run these programs and
queries. You should validate your output file percom.xml against the provided percom.dtd, using the
following command (more information on xmllint can be found in “XML Tips”)
xmllint --dtdvalid /opt/dbcourse/assignments/hw3/percom.dtd --noout percom.xml

You must implement two out of the four options. For each option you implement, submit source code and output.

Extra Credit Problem X1 (10 points)
Implement the other two options that you left out for Problem 3.

Page 4 of 4

Extra Credit Problem X2 (10 points)
As part of the trendy “NoSQL” movement, CompSci 316 decides to port the beer drinker database to XML.
For reference, here is the relational schema:

Drinker(name, address)
Bar(name, address)
Frequents(drinker, bar, times_a_week)
Likes(drinker, beer)
Serves(bar, beer, price)

We would like to represent all this data in one XML file. There are multiple ways to structure the data in a
hierarchical manner. We would like to do the following: The document should list all bars first, and then all
drinkers. Under a bar element, we also list all beers served at the bar. Under a drinker element, we also list all
the beers that the drinker likes, and then all the bars that the drinker frequents. You should capture as many
constraints (e.g., keys and foreign keys) as possible. Design an XML Schema for this document, and submit
both the XML Schema (.xsd) file and an XML (.xml) file that represents the data in the sample relational
database instance (found in /opt/dbcourse/examples/db-beers/data/). You should check your
XML file against your XML Schema with command xmllint (see “XML Tips” on the course Web site for
instructions).

