Announcements (Thu. Sep. 1)

• Registration: as a courtesy to others, please add/drop ASAP

• Homework #1 assigned; due in <3 weeks
 • Sign up for Piazza & Gradiance
 • Set up VM (instructions on course website)
 • If you wish to use the $50 Google Cloud credit (you may not need to), wait for email from me (by Monday)

• Next week: Jun out of town
 • Tuesday: Brett Walenz will be the guest lecturer
 • Thursday: Yuhao will walk through and help with VM setup for those who need it

• TA/UTA office hours to be announced soon
Edgar F. Codd (1923-2003)

- Pilot in the Royal Air Force in WW2
- Inventor of the relational model and algebra while at IBM
- Turing Award, 1981

Relational data model

• A database is a collection of relations (or tables)
• Each relation has a set of attributes (or columns)
• Each attribute has a name and a domain (or type)
 • Set-valued attributes are not allowed
• Each relation contains a set of tuples (or rows)
 • Each tuple has a value for each attribute of the relation
 • Duplicate tuples are not allowed
 • Two tuples are duplicates if they agree on all attributes

☞ Simplicity is a virtue!
Example

User

<table>
<thead>
<tr>
<th>uid</th>
<th>name</th>
<th>age</th>
<th>pop</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>0.9</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>0.2</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.7</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>8</td>
<td>0.3</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Ordering of rows doesn’t matter (even though output is always in some order)

Group

<table>
<thead>
<tr>
<th>gid</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>abc</td>
<td>Book Club</td>
</tr>
<tr>
<td>gov</td>
<td>Student Government</td>
</tr>
<tr>
<td>dps</td>
<td>Dead Putting Society</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Member

<table>
<thead>
<tr>
<th>uid</th>
<th>gid</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>dps</td>
</tr>
<tr>
<td>123</td>
<td>gov</td>
</tr>
<tr>
<td>857</td>
<td>abc</td>
</tr>
<tr>
<td>857</td>
<td>gov</td>
</tr>
<tr>
<td>456</td>
<td>abc</td>
</tr>
<tr>
<td>456</td>
<td>gov</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Schema vs. instance

• **Schema (metadata)**
 • Specifies how the logical structure of data
 • Is defined at setup time
 • Rarely changes

• **Instance**
 • Represents the data content
 • Changes rapidly, but always conforms to the schema

Compare to types vs. collections of objects of these types in a programming language
Example

• Schema
 • User (uid int, name string, age int, pop float)
 • Group (gid string, name string)
 • Member (uid int, gid string)

• Instance
 • User: \{\langle142, Bart, 10, 0.9\rangle, \langle857, Milhouse, 10, 0.2\rangle, \ldots\}\n • Group: \{\langleabc, Book Club\rangle, \langlegov, Student Government\rangle, \ldots\}\n • Member: \{\langle142, dps\rangle, \langle123, gov\rangle, \ldots\}\
Relational algebra

A language for querying relational data based on “operators”

• **Core operators:**
 • Selection, projection, cross product, union, difference, and renaming

• **Additional, derived operators:**
 • Join, natural join, intersection, etc.

• Compose operators to make complex queries
Selection

• Input: a table R
• Notation: $\sigma_p R$
 • p is called a selection condition (or predicate)
• Purpose: filter rows according to some criteria
• Output: same columns as R, but only rows of R that satisfy p
Selection example

- Users with popularity higher than 0.5

\(\sigma_{pop>0.5}User\)

<table>
<thead>
<tr>
<th>uid</th>
<th>name</th>
<th>age</th>
<th>pop</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>0.9</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>0.2</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.7</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>8</td>
<td>0.3</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

\[
\sigma_{pop>0.5}
\]

<table>
<thead>
<tr>
<th>uid</th>
<th>name</th>
<th>age</th>
<th>pop</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>0.9</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.7</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
More on selection

• Selection condition can include any column of R, constants, comparison ($=, \leq, \text{etc.}$) and Boolean connectives (\land: and, \lor: or, \neg: not)
 • Example: users with popularity at least 0.9 and age under 10 or above 12

\[\sigma_{pop \geq 0.9 \land (age < 10 \lor age > 12)} \text{User} \]

• You must be able to evaluate the condition over each single row of the input table!
 • Example: the most popular user

\[\sigma_{pop \geq \text{every pop in User}} \text{User} \]

\text{WRONG!}
Projection

• Input: a table R
• Notation: $\pi_L R$
 • L is a list of columns in R
• Purpose: output chosen columns
• Output: same rows, but only the columns in L
Projection example

• IDs and names of all users

\[\pi_{uid,name} User \]

<table>
<thead>
<tr>
<th>uid</th>
<th>name</th>
<th>age</th>
<th>pop</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>0.9</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>0.2</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.7</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>8</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>142</td>
<td>Bart</td>
<td></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
More on projection

- Duplicate output rows are removed (by definition)
 - Example: user ages

\[\pi_{\text{age}} \text{User} \]

<table>
<thead>
<tr>
<th>uid</th>
<th>name</th>
<th>age</th>
<th>pop</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>0.9</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>0.2</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.7</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>8</td>
<td>0.3</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

\[\pi_{\text{age}} \]

<table>
<thead>
<tr>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>
Cross product

• Input: two tables R and S
• Natation: $R \times S$
• Purpose: pairs rows from two tables
• Output: for each row r in R and each s in S, output a row rs (concatenation of r and s)
Cross product example

User \times Member

<table>
<thead>
<tr>
<th>uid</th>
<th>name</th>
<th>age</th>
<th>pop</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>0.2</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.7</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>uid</th>
<th>gid</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>gov</td>
</tr>
<tr>
<td>857</td>
<td>abc</td>
</tr>
<tr>
<td>857</td>
<td>gov</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>uid</th>
<th>name</th>
<th>age</th>
<th>pop</th>
<th>uid</th>
<th>gid</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>0.2</td>
<td>123</td>
<td>gov</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>0.2</td>
<td>857</td>
<td>abc</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>0.2</td>
<td>857</td>
<td>gov</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.7</td>
<td>123</td>
<td>gov</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.7</td>
<td>857</td>
<td>abc</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.7</td>
<td>857</td>
<td>gov</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
A note a column ordering

• Ordering of columns is unimportant as far as contents are concerned

<table>
<thead>
<tr>
<th>uid</th>
<th>name</th>
<th>age</th>
<th>pop</th>
<th>uid</th>
<th>gid</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>0.2</td>
<td>123</td>
<td>gov</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>0.2</td>
<td>857</td>
<td>abc</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>0.2</td>
<td>857</td>
<td>gov</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.7</td>
<td>123</td>
<td>gov</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.7</td>
<td>857</td>
<td>abc</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.7</td>
<td>857</td>
<td>gov</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

=

<table>
<thead>
<tr>
<th>uid</th>
<th>gid</th>
<th>uid</th>
<th>name</th>
<th>age</th>
<th>pop</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>gov</td>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>0.2</td>
</tr>
<tr>
<td>857</td>
<td>abc</td>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>0.2</td>
</tr>
<tr>
<td>857</td>
<td>gov</td>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>0.2</td>
</tr>
<tr>
<td>123</td>
<td>gov</td>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.7</td>
</tr>
<tr>
<td>857</td>
<td>abc</td>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.7</td>
</tr>
<tr>
<td>857</td>
<td>gov</td>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.7</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

• So cross product is **commutative**, i.e., for any R and S, $R \times S = S \times R$ (up to the ordering of columns)
Derived operator: join

(A.k.a. “theta-join”)

• Input: two tables R and S

• Notation: $R \bowtie_p S$
 • p is called a join condition (or predicate)

• Purpose: relate rows from two tables according to some criteria

• Output: for each row r in R and each row s in S, output a row rs if r and s satisfy p

• Shorthand for $\sigma_p(R \times S)$
Join example

- Info about users, plus IDs of their groups

$$ User \bowtie_{User.uid=Member.uid} Member $$

<table>
<thead>
<tr>
<th>uid</th>
<th>name</th>
<th>age</th>
<th>pop</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>0.2</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.7</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Prefix a column reference with table name and “.” to disambiguate identically named columns from different tables

<table>
<thead>
<tr>
<th>uid</th>
<th>gid</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>gov</td>
</tr>
<tr>
<td>857</td>
<td>abc</td>
</tr>
<tr>
<td>857</td>
<td>gov</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Derived operator: natural join

• Input: two tables R and S

• Notation: $R \bowtie S$

• Purpose: relate rows from two tables, and
 • Enforce equality between identically named columns
 • Eliminate one copy of identically named columns

• Shorthand for $\pi_L \left(R \bowtie^p S \right)$, where
 • p equates each pair of columns common to R and S
 • L is the union of column names from R and S (with duplicate columns removed)
Natural join example

\[\text{User} \bowtie \text{Member} = \pi_? (\text{User} \bowtie_? \text{Member}) \\
= \pi_{\text{uid, name, age, pop, gid}} (\text{User} \bowtie \text{Member}.\text{uid} = \text{Member}.\text{uid}) \]
Union

• Input: two tables R and S
• Notation: $R \cup S$
 • R and S must have identical schema
• Output:
 • Has the same schema as R and S
 • Contains all rows in R and all rows in S (with duplicate rows removed)
Difference

• Input: two tables R and S
• Notation: $R - S$
 • R and S must have identical schema
• Output:
 • Has the same schema as R and S
 • Contains all rows in R that are not in S
Derived operator: intersection

• Input: two tables R and S
• Notation: $R \cap S$
 • R and S must have identical schema
• Output:
 • Has the same schema as R and S
 • Contains all rows that are in both R and S
• Shorthand for $R - (R - S)$
• Also equivalent to $S - (S - R)$
• And to $R \bowtie S$
Renaming

• Input: a table R and S
• Notation: $\rho_S R$, $\rho_{(A_1,A_2,...)} R$, or $\rho_{S(A_1,A_2,...)} R$
• Purpose: “rename” a table and/or its columns
• Output: a table with the same rows as R, but called differently
• Used to
 • Avoid confusion caused by identical column names
 • Create identical column names for natural joins
• As with all other relational operators, it doesn’t modify the database
 • Think of the renamed table as a copy of the original
Renaming example

• IDs of users who belong to at least two groups

\[Member \bowtie_? Member \]

\[\pi_{\text{uid}} \left(Member \bowtie_{\text{Member}.\text{uid}=\text{Member}.\text{uid} \land \text{Member}.\text{gid} \neq \text{Member}.\text{gid}} \right) \]

\[\pi_{\text{uid}_1} \left(\rho_{(\text{uid}_1,\text{gid}_1)}(\text{Member}) \bowtie_{\text{uid}_1=\text{uid}_2 \land \text{gid}_1 \neq \text{gid}_2} \rho_{(\text{uid}_2,\text{gid}_2)}(\text{Member}) \right) \]

WRONG!
Expression tree notation

\(\pi_{\text{uid}_1} \times_{\text{uid}_1 = \text{uid}_2 \land \text{gid}_1 \neq \text{gid}_2} \rho(\text{uid}_1, \text{gid}_1) \times \rho(\text{uid}_2, \text{gid}_2) \)
Summary of core operators

• Selection: $\sigma_p R$
• Projection: $\pi_L R$
• Cross product: $R \times S$
• Union: $R \cup S$
• Difference: $R - S$
• Renaming: $\rho_{S(A_1,A_2,...)} R$
 • Does not really add “processing” power
Summary of derived operators

• Join: $R \bowtie_p S$
• Natural join: $R \bowtie S$
• Intersection: $R \cap S$

• Many more
 • Semijoin, anti-semijoin, quotient, …
An exercise

• Names of users in Lisa’s groups

Writing a query bottom-up:

Who’s Lisa?

\[\sigma_{name="Lisa"} \]

Lisa’s groups

\[\pi_{gid} \]

Member

Users in Lisa’s groups

\[\pi_{uid} \]

Their names

\[\pi_{name} \]

User
Another exercise

- IDs of groups that Lisa doesn’t belong to

Writing a query top-down:

```
π_{gid}
\text{Group}
```

```
π_{gid}
\Join
\sigma_{name="Lisa"}
\text{Member}
```

```
\pi_{gid}
\text{IDs of Lisa’s groups}
```

```
\text{All group IDs}
```

```
A trickier exercise

• Who are the most popular?
  • Who do NOT have the highest pop rating?
  • Whose pop is lower than somebody else’s?

A deeper question:
When (and why) is “—” needed?
Monotone operators

• If some old output rows may need to be removed
  • Then the operator is non-monotone
• Otherwise the operator is monotone
  • That is, old output rows always remain “correct” when more rows are added to the input

• Formally, for a monotone operator \( op: \)
  \[ R \subseteq R' \text{ implies } op(R) \subseteq op(R') \text{ for any } R, R' \]
Classification of relational operators

- Selection: $\sigma_p R$  Monotone
- Projection: $\pi_L R$  Monotone
- Cross product: $R \times S$  Monotone
- Join: $R \bowtie_p S$  Monotone
- Natural join: $R \bowtie S$  Monotone
- Union: $R \cup S$  Monotone
- Difference: $R - S$  Monotone w.r.t. $R$; non-monotone w.r.t $S$
- Intersection: $R \cap S$  Monotone
Why is “—” needed for “highest”?

• Composition of monotone operators produces a monotone query
  • Old output rows remain “correct” when more rows are added to the input

• Is the “highest” query monotone?
  • No!
    • Current highest pop is 0.9
    • Add another row with pop 0.91
    • Old answer is invalidated

☞ So it must use difference!
Why do we need core operator $X$?

• Difference
  • The only non-monotone operator
• Projection
  • The only operator that removes columns
• Cross product
  • The only operator that adds columns
• Union
  • The only operator that allows you to add rows?
  • A more rigorous argument?
• Selection?
  • Homework problem
Extensions to relational algebra

• Duplicate handling ("bag algebra")
• Grouping and aggregation
• “Extension” (or “extended projection”) to allow new column values to be computed

☞ All these will come up when we talk about SQL
☞ But for now we will stick to standard relational algebra without these extensions
Why is r.a. a good query language?

• Simple
  • A small set of core operators
  • Semantics are easy to grasp

• Declarative?
  • Yes, compared with older languages like CODASYL
  • Though operators do look somewhat “procedural”

• Complete?
  • With respect to what?
Relational calculus

• \{u.\textit{uid} \mid u \in User \land 
  \neg (\exists u' \in User: u.\textit{pop} < u'.\textit{pop})\}, or

• \{u.\textit{uid} \mid u \in User \land 
  (\forall u' \in User: u.\textit{pop} \geq u'.\textit{pop})\}

• Relational algebra = “safe” relational calculus
  • Every query expressible as a safe relational calculus query
    is also expressible as a relational algebra query
  • And vice versa

• Example of an “unsafe” relational calculus query
  • \{u.\textit{name} \mid \neg (u \in User)\}
  • Cannot evaluate it just by looking at the database
Turing machine

• A conceptual device that can execute any computer algorithm
• Approximates what general-purpose programming languages can do
  • E.g., Python, Java, C++, ...

☞ So how does relational algebra compare with a Turing machine?
Limits of relational algebra

• Relational algebra has **no recursion**
  • Example: given relation `Friend(uid1, uid2)`, who can Bart reach in his social network with any number of hops?
    • Writing this query in r.a. is impossible!
    • So r.a. is not as powerful as general-purpose languages

• But why not?
  • Optimization becomes **undecidable**
    ☛ Simplicity is empowering
  • Besides, you can always implement it at the application level, and recursion is added to SQL nevertheless!