Announcements (Thu. Sep. 15)

• Homework #1 due next Tuesday (11:59pm)
• Course project description posted
 • Milestone #1 right after fall break
 • Teamwork required: 4 people per team

Motivation

<table>
<thead>
<tr>
<th>uid</th>
<th>uname</th>
<th>gid</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>dps</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>gov</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>abc</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>gov</td>
</tr>
<tr>
<td>656</td>
<td>Ralph</td>
<td>abc</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>gov</td>
</tr>
</tbody>
</table>

• Why is UserGroup \((uid, uname, gid)\) a bad design?
• Wouldn’t it be nice to have a systematic approach to detecting and removing redundancy in designs?
 • Dependencies, decompositions, and normal forms
Functional dependencies

- A functional dependency (FD) has the form \(X \rightarrow Y \), where \(X \) and \(Y \) are sets of attributes in a relation \(R \).
- \(X \rightarrow Y \) means that whenever two tuples in \(R \) agree on all the attributes in \(X \), they must also agree on all attributes in \(Y \).

FD examples

Address (street_address, city, state, zip)

- \(\text{zip, state} \rightarrow \text{zip?} \)
 - This is a trivial FD
 - Trivial FD: LHS \(\supseteq \) RHS
- \(\text{zip} \rightarrow \text{state, zip?} \)
 - This is non-trivial, but not completely non-trivial
 - Completely non-trivial FD: LHS \(\cap \) RHS = \(\emptyset \)

Redefining “keys” using FD’s

A set of attributes \(K \) is a key for a relation \(R \) if
- \(K \rightarrow \) all (other) attributes of \(R \)
 - That is, \(K \) is a “super key”
- No proper subset of \(K \) satisfies the above condition
 - That is, \(K \) is minimal
Reasoning with FD’s

Given a relation R and a set of FD’s \mathcal{F}

- Does another FD follow from \mathcal{F}?
- Are some of the FD’s in \mathcal{F} redundant (i.e., they follow from the others)?
- Is K a key of R?
- What are all the keys of R?

Attribute closure

- Given R, a set of FD’s \mathcal{F} that hold in R, and a set of attributes Z in R:
 - The *closure* of Z (denoted Z^+) with respect to \mathcal{F} is the set of all attributes $\{A_1, A_2, \ldots\}$ functionally determined by Z (that is, $Z \rightarrow A_1 A_2 \ldots$)
- Algorithm for computing the closure
 - Start with closure $= Z$
 - If $X \rightarrow Y$ is in \mathcal{F} and X is already in the closure, then also add Y to the closure
 - Repeat until no new attributes can be added

A more complex example

UserJoinsGroup (uid, $uname$, $twitterid$, gid, $fromDate$)

Assume that there is a 1-1 correspondence between our users and Twitter accounts

- $uid \rightarrow uname$, $twitterid$
- $twitterid \rightarrow uid$
- $uid, gid \rightarrow fromDate$

Not a good design, and we will see why shortly
Example of computing closure

- \{(gid, twitterid)\}^+ = ?
 - twitterid → uid
 - Add uid
 - Closure grows to \{ gid, twitterid, uid \}
 - uid → username, twitterid
 - Add username, twitterid
 - Closure grows to \{ gid, twitterid, uid, username \}

\[\mathcal{F} \text{ includes: } \]
- uid → username, twitterid
- twitterid → uid
- uid, gid → powerless

Using attribute closure

Given a relation \(R \) and set of FD’s \(\mathcal{F} \)
- Does another FD \(X \rightarrow Y \) follow from \(\mathcal{F} \)?
 - Compute \(X^+ \) with respect to \(\mathcal{F} \)
 - If \(Y \subseteq X^+ \), then \(X \rightarrow Y \) follows from \(\mathcal{F} \)
- Is \(K \) a key of \(R \)?
 - Compute \(K^+ \) with respect to \(\mathcal{F} \)
 - If \(K^+ \) contains all the attributes of \(R \), \(K \) is a super key
 - Still need to verify that \(K \) is minimal (how?)

Rules of FD’s

- Armstrong’s axioms
 - Reflexivity: If \(Y \subseteq X \), then \(X \rightarrow Y \)
 - Augmentation: If \(X \rightarrow Y \), then \(XZ \rightarrow YZ \) for any \(Z \)
 - Transitivity: If \(X \rightarrow Y \) and \(Y \rightarrow Z \), then \(X \rightarrow Z \)
- Rules derived from axioms
 - Splitting: If \(X \rightarrow YZ \), then \(X \rightarrow Y \) and \(X \rightarrow Z \)
 - Combining: If \(X \rightarrow Y \) and \(X \rightarrow Z \), then \(X \rightarrow YZ \)
- Using these rules, you can prove or disprove an FD given a set of FDs
Non-key FD's

- Consider a non-trivial FD $X \rightarrow Y$ where X is not a super key
 - Since X is not a super key, there are some attributes (say Z) that are not functionally determined by X

\[
\begin{array}{ccc}
X & Y & Z \\
a & b & c_1 \\
a & b & c_2 \\
\ldots & \ldots & \ldots
\end{array}
\]

That b is associated with a is recorded multiple times: redundancy, update/insertion/deletion anomaly

Example of redundancy

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

- uid \rightarrow uname, twitterid
 - (... plus other FD's)

<table>
<thead>
<tr>
<th>id</th>
<th>username</th>
<th>twitterid</th>
<th>gid</th>
<th>fromDate</th>
</tr>
</thead>
<tbody>
<tr>
<td>162</td>
<td>BartJSimpson</td>
<td>dps</td>
<td>1987-04-19</td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>Milhouse</td>
<td>gor</td>
<td>1989-12-17</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>Lisasimpson</td>
<td>abc</td>
<td>1987-06-19</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>Lisasimpson</td>
<td>gor</td>
<td>1988-09-01</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>Wiggum</td>
<td>abc</td>
<td>1991-05-15</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>Wiggum</td>
<td>gor</td>
<td>1992-09-01</td>
</tr>
</tbody>
</table>

Decomposition

- Eliminates redundancy
- To get back to the original relation:
Unnecessary decomposition

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>Username</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>@BartJSimpson</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>@MilhouseFan</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>@LisaTweeter</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>@ralphwiggum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>Username</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>@BartJSimpson</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>@MilhouseFan</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>@LisaTweeter</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>@ralphwiggum</td>
</tr>
</tbody>
</table>

Bad decomposition

<table>
<thead>
<tr>
<th>ID</th>
<th>GID</th>
<th>FromDate</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>dps</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>123</td>
<td>gov</td>
<td>1989-12-17</td>
</tr>
<tr>
<td>857</td>
<td>abc</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>857</td>
<td>gov</td>
<td>1988-09-01</td>
</tr>
<tr>
<td>456</td>
<td>abc</td>
<td>1991-04-25</td>
</tr>
<tr>
<td>456</td>
<td>gov</td>
<td>1992-09-01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ID</th>
<th>GID</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>dps</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>123</td>
<td>gov</td>
<td>1989-12-17</td>
</tr>
<tr>
<td>857</td>
<td>abc</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>857</td>
<td>gov</td>
<td>1988-09-01</td>
</tr>
<tr>
<td>456</td>
<td>abc</td>
<td>1991-04-25</td>
</tr>
<tr>
<td>456</td>
<td>gov</td>
<td>1992-09-01</td>
</tr>
</tbody>
</table>

Lossless join decomposition

- Decompose relation R into relations S and T
 - $\text{atts}(R) = \text{atts}(S) \cup \text{atts}(T)$
 - $S = \pi_{\text{atts}(S)}(R)$
 - $T = \pi_{\text{atts}(T)}(R)$
- The decomposition is a **lossless join decomposition** if, given known constraints such as FD’s, we can guarantee that $R = S \bowtie T$
- Any decomposition gives $R \subseteq S \bowtie T$ (why?)
 - A **lossy** decomposition is one with $R \subset S \bowtie T$
Loss? But I got more rows!

• “Loss” refers not to the loss of tuples, but to the loss of information
 • Or, the ability to distinguish different original relations

No way to tell which is the original relation

Questions about decomposition

• When to decompose

• How to come up with a correct decomposition (i.e., lossless join decomposition)

An answer: BCNF

• A relation \(R \) is in Boyce-Codd Normal Form if
 • For every non-trivial FD \(X \rightarrow Y \) in \(R \), \(X \) is a super key
 • That is, all FDs follow from “key \(\rightarrow \) other attributes”

• When to decompose
 • As long as some relation is not in BCNF
• How to come up with a correct decomposition
 • Always decompose on a BCNF violation (details next)
 • Then it is guaranteed to be a lossless join decomposition!
BCNF decomposition algorithm

• Find a BCNF violation
 • That is, a non-trivial FD $X \rightarrow Y$ in R where X is not a super key of R
• Decompose R into R_1 and R_2, where
 • R_1 has attributes $X \cup Y$
 • R_2 has attributes $X \cup Z$, where Z contains all attributes of R that are in neither X nor Y
• Repeat until all relations are in BCNF

BCNF decomposition example

Another example
Why is BCNF decomposition lossless?

Given non-trivial $X \rightarrow Y$ in R where X is not a super key of R, need to prove:

- Anything we project always comes back in the join:
 $R \subseteq \pi_{XY}(R) \bowtie \pi_{XZ}(R)$
 • Sure; and it doesn’t depend on the FD
- Anything that comes back in the join must be in the original relation:
 $R \supseteq \pi_{XY}(R) \bowtie \pi_{XZ}(R)$
 • Proof will make use of the fact that $X \rightarrow Y$

Recap

- Functional dependencies: a generalization of the key concept
- Non-key functional dependencies: a source of redundancy
- BCNF decomposition: a method for removing redundancies
 • BCNF decomposition is a lossless join decomposition
- BCNF: schema in this normal form has no redundancy due to FD’s

BCNF = no redundancy?

- User $(uid, gid, place)$
 • A user can belong to multiple groups
 • A user can register places she’s visited
 • Groups and places have nothing to do with other
 • FD’s?
 - BCNF?
 - Redundancies?
Multivalued dependencies

• A multivalued dependency (MVD) has the form $X \rightarrow Y$, where X and Y are sets of attributes in a relation R

• $X \rightarrow Y$ means that whenever two rows in R agree on all the attributes of X, then we can swap their Y components and get two rows that are also in R.

\[
\begin{array}{ccc}
X & Y & Z \\
ad & b_1 & c_1 \\
ad & b_2 & c_2 \\
\cdots & \cdots & \cdots \\
\end{array}
\]

MVD examples

User (uid, gid, place)

• uid \rightarrow gid

• uid \rightarrow place
 • Intuition: given uid, gid and place are “independent”

• uid, gid \rightarrow place
 • Trivial: LHS \cup RHS = all attributes of R

• uid, gid \rightarrow uid
 • Trivial: LHS \supset RHS

Complete MVD + FD rules

• FD reflexivity, augmentation, and transitivity

• MVD complementation:
 If $X \rightarrow Y$, then $X \rightarrow atts(R) - X - Y$

• MVD augmentation:
 If $X \rightarrow Y$ and $V \subseteq W$, then $XW \rightarrow YV$

• MVD transitivity:
 If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z - Y$

• Replication (FD is MVD):
 If $X \rightarrow Y$, then $X \rightarrow Y$ Try proving things using these!

• Coalescence:
 If $X \rightarrow Y$ and $Z \subseteq Y$ and there is some W disjoint from Y such that $W \rightarrow Z$, then $X \rightarrow Z$
An elegant solution: chase

• Given a set of FD's and MVD's \mathcal{D}, does another dependency d (FD or MVD) follow from \mathcal{D}?

• Procedure
 • Start with the premise of d, and treat them as “seed” tuples in a relation
 • Apply the given dependencies in \mathcal{D} repeatedly
 • If we apply an FD, we infer equality of two symbols
 • If we apply an MVD, we infer more tuples
 • If we infer the conclusion of d, we have a proof
 • Otherwise, if nothing more can be inferred, we have a counterexample

Proof by chase

• In $R(A, B, C, D)$, does $A \rightarrow B$ and $B \rightarrow C$ imply that $A \rightarrow C$?

<table>
<thead>
<tr>
<th>Have</th>
<th>Need</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \rightarrow B$</td>
<td>$A \rightarrow C$</td>
</tr>
<tr>
<td>$B \rightarrow C$</td>
<td></td>
</tr>
</tbody>
</table>

Another proof by chase

• In $R(A, B, C, D)$, does $A \rightarrow B$ and $B \rightarrow C$ imply that $A \rightarrow C$?

<table>
<thead>
<tr>
<th>Have</th>
<th>Need</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \rightarrow B$</td>
<td>$A \rightarrow C$</td>
</tr>
<tr>
<td>$B \rightarrow C$</td>
<td></td>
</tr>
</tbody>
</table>

In general, with both MVD's and FD's, chase can generate both new tuples and new equalities.
Counterexample by chase

• In \(R(A, B, C, D) \), does \(A \rightarrow BC \) and \(CD \rightarrow B \) imply that \(A \rightarrow B \)?

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b_1</td>
<td>c_1</td>
<td>d_1</td>
</tr>
<tr>
<td>a</td>
<td>b_2</td>
<td>c_2</td>
<td>d_2</td>
</tr>
</tbody>
</table>

\(A \rightarrow BC \)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b_1</td>
<td>c_1</td>
<td>d_1</td>
</tr>
<tr>
<td>a</td>
<td>b_2</td>
<td>c_2</td>
<td>d_1</td>
</tr>
<tr>
<td>a</td>
<td>b_1</td>
<td>c_1</td>
<td>d_2</td>
</tr>
</tbody>
</table>

Counterexample!

4NF

• A relation \(R \) is in Fourth Normal Form (4NF) if
 • For every non-trivial MVD \(X \rightarrow Y \) in \(R \), \(X \) is a superkey
 • That is, all FD’s and MVD’s follow from “key \(
ightarrow \) other attributes” (i.e., no MVD’s and no FD’s besides key functional dependencies)

• 4NF is stronger than BCNF
 • Because every FD is also a MVD

4NF decomposition algorithm

• Find a 4NF violation
 • A non-trivial MVD \(X \rightarrow Y \) in \(R \) where \(X \) is not a superkey

• Decompose \(R \) into \(R_1 \) and \(R_2 \), where
 • \(R_1 \) has attributes \(X \cup Y \)
 • \(R_2 \) has attributes \(X \cup Z \) (where \(Z \) contains \(R \) attributes not in \(X \) or \(Y \))

• Repeat until all relations are in 4NF

• Almost identical to BCNF decomposition algorithm
• Any decomposition on a 4NF violation is lossless
4NF decomposition example

User (uid, gid, place) 4NF violation: uid → gid

Member (uid, gid) 4NF

Visited (uid, place) 4NF

Summary

• Philosophy behind BCNF, 4NF: Data should depend on the key, the whole key, and nothing but the key!
 • You could have multiple keys though

• Other normal forms
 • 3NF: More relaxed than BCNF; will not remove redundancy if doing so makes FDs harder to enforce
 • 2NF: Slightly more relaxed than 3NF
 • 1NF: All column values must be atomic