Relational Database Design Theory

Introduction to Databases
CompSci 316 Fall 2016

DUKE

COMPUTER SCIENCE
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Announcements (Thu. Sep. 15)

- Homework \#1 due next Tuesday (11:59pm)
\qquad
- Course project description posted
- Milestone \#1 right after fall break
- Teamwork required: 4 people per team

Motivation

uid	uname	gid
142	Bart	dps
123	Milhouse	gov
857	Lisa	abc
857	Lisa	gov
456	Ralph	abc
456	Ralph	gov
\ldots	\ldots	\ldots

-Why is UserGroup (uid, uname, gid) a bad design?
-

- Wouldn't it be nice to have a systematic approach to detecting and removing redundancy in designs?
- Dependencies, decompositions, and normal forms

Functional dependencies

- A functional dependency (FD) has the form $X \rightarrow Y$, where X and Y are sets of attributes in a relation R
- $X \rightarrow Y$ means that whenever two tuples in R agree on all the attributes in X, they must also agree on all attributes in Y

FD examples

Address (street_address, city, state, zip)

- zip, state \rightarrow zip?
- This is a trivial FD
- Trivial FD: LHS \supseteq RHS
- zip \rightarrow state, zip?
- This is non-trivial, but not completely non-trivial
- Completely non-trivial FD: LHS \cap RHS $=\varnothing$

Redefining "keys" using FD's

A set of attributes K is a key for a relation R if

- $K \rightarrow$ all (other) attributes of R
- That is, K is a "super key"
- No proper subset of K satisfies the above condition
- That is, K is minimal \qquad
\qquad
\qquad

Reasoning with FD's

Given a relation R and a set of FD's \mathcal{F}

- Does another FD follow from \mathcal{F} ?
- Are some of the FD's in \mathcal{F} redundant (i.e., they follow from the others)?
- Is K a key of R ?
- What are all the keys of R ?

Attribute closure

\qquad

- Given R, a set of FD's \mathcal{F} that hold in R, and a set of \qquad attributes Z in R :
The closure of Z (denoted Z^{+}) with respect to \mathcal{F} is \qquad determined by Z (that is, $Z \rightarrow A_{1} A_{2} \ldots$) \qquad
- Algorithm for computing the closure
- Start with closure $=Z$
- If $X \rightarrow Y$ is in \mathcal{F} and X is already in the closure, then also \qquad add Y to the closure
- Repeat until no new attributes can be added

A more complex example

UserJoinsGroup (uid, uname, twitterid, gid, fromDate) \qquad
Assume that there is a $1-1$ correspondence between our users and Twitter accounts \qquad

- uid \rightarrow uname, twitterid
- twitterid \rightarrow uid \qquad
- uid, gid \rightarrow fromDate

Not a good design, and we will see why shortly
\qquad
\qquad
\qquad

Example of computing closure

- $\{\text { gid, twitterid }\}^{+}=$?
uid \rightarrow uname, twitterid
twitterid \rightarrow uid
uid, gid \rightarrow fromDate
- Add uid
- Closure grows to \{ gid, twitterid, uid \}
- uid \rightarrow uname, twitterid
- Add uname, twitterid
- Closure grows to \{ gid, twitterid, uid, uname \}

Using attribute closure

Given a relation R and set of FD's \mathcal{F}

- Does another FD $X \rightarrow Y$ follow from \mathcal{F} ?
- Compute X^{+}with respect to \mathscr{F}
- If $Y \subseteq X^{+}$, then $X \rightarrow Y$ follows from \mathcal{F}
- Is K a key of R ?
- Compute K^{+}with respect to \mathscr{F}
- If K^{+}contains all the attributes of R, K is a super key
- Still need to verify that K is minimal (how?)

Rules of FD's

- Armstrong's axioms
- Reflexivity: If $Y \subseteq X$, then $X \rightarrow Y$
- Augmentation: If $X \rightarrow Y$, then $X Z \rightarrow Y Z$ for any Z
- Transitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$
- Rules derived from axioms
- Splitting: If $X \rightarrow Y Z$, then $X \rightarrow Y$ and $X \rightarrow Z$
- Combining: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow Y Z$
${ }^{-}$Using these rules, you can prove or disprove an FD given a set of FDs

Non-key FD's

- Consider a non-trivial FD $X \rightarrow Y$ where X is not a super key
- Since X is not a super key, there are some attributes (say Z) that are not functionally determined by X

X	Y	Z
a	b	c_{1}
a	b	c_{2}
\ldots	\ldots	\ldots

That b is associated with a is recorded multiple times: redundancy, update/insertion/deletion anomaly

Example of redundancy

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)
\qquad

- uid \rightarrow uname, twitterid
(... plus other FD's)

uid	uname	twitterid	gid	fromoate
142	Bart	@BartJSimpson	dps	1987-04-19
123	Milhouse	@MilhouseVan_	gov	1989-12-17
857	Lisa	$@$ @isasimpson	abc	1987-04-19
857	Lisa	@lisasimpson	gov	1988-09-01
456	Ralph	@ralphwiggum	abc	1991-04-25
456	Ralph	@ralphwiggum	gov	1992-09-01
...	.'.	-	-*	-*

\qquad
\qquad
\qquad
\qquad
\qquad

Decomposition

- To get back to the original relation:

Unnecessary decomposition \qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Lossless join decomposition

\qquad

- Decompose relation R into relations S and T \qquad
- $\operatorname{attrs}(R)=\operatorname{attrs}(S) \cup \operatorname{attrs}(T)$
- $S=\pi_{\text {attrs }(S)}(R)$
- $T=\pi_{a t t r s(T)}(R)$
- The decomposition is a lossless join decomposition if, given known constraints such as FD's, we can guarantee that $R=S \bowtie T$
- Any decomposition gives $R \subseteq S \bowtie T$ (why?)
- A lossy decomposition is one with $R \subset S \bowtie T$

Loss? But I got more rows!

- "Loss" refers not to the loss of tuples, but to the \qquad loss of information
- Or, the ability to distinguish different original relations \qquad

		uid	mid	fromote		
		142	dps	1987-04-19	No way to tell which is the original relation	
		123	gov	1989-12-17		
		857	abc	1988-09-01		
		857	gov	1987-04-19		
uid	हुत	456	abc	1991-04-25	uid tromorie	
142	dps	456	gov	1992-09-01		
123	gov	-	-	-	123	1989-12-17
857	abc				857	1987-04-19
857	gov				857	1988-09-01
456	abc				456	1991-04-25
456	gov				456	1992-09-01
--	--				--	--

\qquad
\qquad
\qquad
\qquad

Questions about decomposition \qquad
\qquad

- When to decompose
- How to come up with a correct decomposition (i.e., lossless join decomposition) \qquad
\qquad
\qquad
\qquad

An answer: BCNF

- A relation R is in Boyce-Codd Normal Form if \qquad
- For every non-trivial FD $X \rightarrow Y$ in R, X is a super key
- That is, all FDs follow from "key \rightarrow other attributes"
- When to decompose
- As long as some relation is not in BCNF
- How to come up with a correct decomposition
- Always decompose on a BCNF violation (details next)
\leftrightarrow Then it is guaranteed to be a lossless join
decomposition!
\qquad
\qquad
\qquad
\qquad
\qquad

BCNF decomposition algorithm

- Find a BCNF violation
- That is, a non-trivial FD $X \rightarrow Y$ in R where X is not a super key of R
- Decompose R into R_{1} and R_{2}, where
- R_{1} has attributes $X \cup Y$
- R_{2} has attributes $X \cup Z$, where Z contains all attributes of R that are in neither X nor Y
- Repeat until all relations are in BCNF

BCNF decomposition example

\qquad
uid \rightarrow uname, twitterid
twitterid \rightarrow uid uid, gid \rightarrow fromDate
\qquad

UserJoinsGroup (uid, uname, twitterid, gid, fromDate) \qquad BCNF violation: uid \rightarrow uname, twitterid

uid \rightarrow uname, twitterid twitterid \rightarrow uid

BCNF

Member (uid, gid, fromDate)
uid, gid \rightarrow fromDate
BCNF

Why is BCNF decomposition lossless

Given non-trivial $X \rightarrow Y$ in R where X is not a super key of R, need to prove:

- Anything we project always comes back in the join:

$$
R \subseteq \pi_{X Y}(R) \bowtie \pi_{X Z}(R)
$$

- Sure; and it doesn't depend on the FD
- Anything that comes back in the join must be in the original relation:

$$
R \supseteq \pi_{X Y}(R) \bowtie \pi_{X Z}(R)
$$

- Proof will make use of the fact that $X \rightarrow Y$

Recap

- Functional dependencies: a generalization of the key concept
- Non-key functional dependencies: a source of redundancy
- BCNF decomposition: a method for removing \qquad redundancies
- BNCF decomposition is a lossless join decomposition
- BCNF: schema in this normal form has no redundancy due to FD's

$\mathrm{BCNF}=$ no redundancy?

\qquad

- User (uid, gid, place) \qquad
- A user can belong to multiple groups
- A user can register places she's visited
- Groups and places have nothing to do with other
- FD's?
- BCNF?

142 dps Springfield
142 dps Australia
456 abc Springfield

- Redundancies?

456 gov Springfield
456 gov Morocco
\qquad
\qquad
\qquad
\qquad
...
\qquad

Multivalued dependencies

- A multivalued dependency (MVD) has the form \qquad $X \rightarrow Y$, where X and Y are sets of attributes in a relation R
- $X \rightarrow Y$ means that whenever

X	Y	Z
a	b_{1}	c_{1}

$\begin{array}{lll}a & b_{1} & c_{1}\end{array}$
$\begin{array}{lll}a & b_{2} & c_{2}\end{array}$

$\cdots \quad \cdots \quad \cdots$

MVD examples

User (uid, gid, place)
\qquad

- uid \rightarrow gid
- uid \rightarrow place
- Intuition: given uid, gid and place are "independent"
- uid, gid \rightarrow place
- Trivial: LHS \cup RHS $=$ all attributes of R
- uid, gid \rightarrow uid \qquad
- Trivial: LHS \supseteq RHS

Complete MVD + FD rules

- FD reflexivity, augmentation, and transitivity \qquad
- MVD complementation:

If $X \rightarrow Y$, then $X \rightarrow \operatorname{attrs}(R)-X-Y$ \qquad

- MVD augmentation:

If $X \rightarrow Y$ and $V \subseteq W$, then $X W \rightarrow Y V$

- MVD transitivity

If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z-Y$

- Replication (FD is MVD):

If $X \rightarrow Y$, then $X \rightarrow Y$. Try proving things using these!?

- Coalescence:

If $X \rightarrow Y$ and $Z \subseteq Y$ and there is some W disjoint from Y such that $W \rightarrow Z$, then $X \rightarrow Z$
\qquad
\qquad
\qquad

An elegant solution: chase

- Given a set of FD's and MVD's \mathcal{D}, does another dependency d (FD or MVD) follow from \mathcal{D} ?
- Procedure
- Start with the premise of d, and treat them as "seed" tuples in a relation
- Apply the given dependencies in \mathcal{D} repeatedly
- If we apply an FD , we infer equality of two symbols
- If we apply an MVD, we infer more tuples
- If we infer the conclusion of d, we have a proof
- Otherwise, if nothing more can be inferred, we have a counterexample

Proof by chase

- In $R(A, B, C, D)$, does $A \rightarrow B$ and $B \rightarrow C$ imply that
\qquad $A \rightarrow C$?

Need: $\boldsymbol{A}|\boldsymbol{B}| \boldsymbol{C} \mid \boldsymbol{D}$
$\begin{array}{llll}A & b_{1} & c_{1} & d_{1}\end{array}$ $a b_{1} c_{2} d_{1}$ है
a $b_{2} c_{2} d_{2}$
a $b_{2} c_{1} d_{2}$
$A \rightarrow B \quad a \quad b_{2} c_{1} d_{1}$
$B \rightarrow C$ a $b_{2} c_{1} d_{2}$
$B \rightarrow C \begin{array}{llll}a & b_{1} & c_{2} & d_{1} \\ a & b_{1} & c_{1} & d_{2}\end{array}$

Another proof by chase

\qquad

- In $R(A, B, C, D)$, does $A \rightarrow B$ and $B \rightarrow C$ imply that \qquad $A \rightarrow C$?
Have: A
A B C
a $b_{1} c_{1} d_{1}$
Need:
$c_{1}=c_{2}$ \qquad
$a b_{2} c_{2} d_{2}$
$A \rightarrow B \quad b_{1}=b_{2}$
$B \rightarrow C \quad c_{1}=c_{2}$

In general, with both MVD's and FD's, chase can generate both new tuples and new equalities

Counterexample by chase

- In $R(A, B, C, D)$, does $A \rightarrow B C$ and $C D \rightarrow B$ imply that $A \rightarrow B$?
Have:

A	B	C	D

Need: $b_{1}=b_{2}$
a $b_{1} c_{1} d_{1}$
$a b_{2} c_{2} d_{2}$
$A \rightarrow B C \begin{array}{llll}a & b_{2} & c_{2} & d_{1} \\ a & b_{1} & c_{1} & d_{2}\end{array}$
Counterexample:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

4NF

- A relation R is in Fourth Normal Form (4NF) if
- For every non-trivial MVD $X \rightarrow Y$ in R, X is a superkey
- That is, all FD's and MVD's follow from "key \rightarrow other attributes" (i.e., no MVD's and no FD's besides key functional dependencies)
- 4NF is stronger than BCNF
- Because every FD is also a MVD

4NF decomposition algorithm

\qquad

- Find a 4NF violation \qquad
- A non-trivial MVD $X \rightarrow Y$ in R where X is not a superkey
- Decompose R into R_{1} and R_{2}, where \qquad
- R_{1} has attributes $X \cup Y$
- R_{2} has attributes $X \cup Z$ (where Z contains R attributes not in X or Y)
- Repeat until all relations are in 4NF
- Almost identical to BCNF decomposition algorithm
- Any decomposition on a 4NF violation is lossless

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Summary

- Philosophy behind BCNF, 4NF:

Data should depend on the key,
the whole key,
and nothing but the key!

- You could have multiple keys though
- Other normal forms
- 3NF: More relaxed than BCNF; will not remove redundancy if doing so makes FDs harder to enforce \qquad
- 2NF: Slightly more relaxed than 3NF
- 1 NF : All column values must be atomic

