Relational Database Design Theory

Introduction to Databases CompSci 316 Fall 2016

Announcements (Thu. Sep. 15)

- Homework #1 due next Tuesday (11:59pm)
- Course project description posted
 - Milestone #1 right after fall break
 - Teamwork required: 4 people per team

Motivation

- \bullet Why is UserGroup ($\underline{uid},$ uname, $\underline{gid})$ a bad design?
- Wouldn't it be nice to have a systematic approach to detecting and removing redundancy in designs?
 - Dependencies, decompositions, and normal forms

Functional dependencies

- A functional dependency (FD) has the form X → Y, where X and Y are sets of attributes in a relation R
- X → Y means that whenever two tuples in R agree on all the attributes in X, they must also agree on all attributes in Y

FD examples

Address (street address, city, state, zip)

- zip, state \rightarrow zip?
 - This is a trivial FD
 - Trivial FD: LHS ⊇ RHS
- zip → state, zip?
 - This is non-trivial, but not completely non-trivial
 - Completely non-trivial FD: LHS \cap RHS = \emptyset

Redefining "keys" using FD's

A set of attributes K is a key for a relation R if

- $K \rightarrow \text{all (other)}$ attributes of R
 - That is, *K* is a "super key"
- No proper subset of *K* satisfies the above condition
 - That is, *K* is minimal

Reasoning with FD's

Given a relation R and a set of FD's \mathcal{F}

- Does another FD follow from \mathcal{F} ?
 - Are some of the FD's in ${\mathcal F}$ redundant (i.e., they follow from the others)?
- Is *K* a key of *R*?
 - What are all the keys of *R*?

Attribute closure

 Given R, a set of FD's F that hold in R, and a set of attributes Z in R:

The closure of Z (denoted Z^+) with respect to \mathcal{F} is the set of all attributes $\{A_1, A_2, ...\}$ functionally determined by Z (that is, $Z \to A_1A_2$...)

- Algorithm for computing the closure
 - Start with closure = Z
 - If $X \to Y$ is in $\mathcal F$ and X is already in the closure, then also add Y to the closure
 - Repeat until no new attributes can be added

A more complex example

UserJoinsGroup (uid, uname, twitterid, gid, fromDate) Assume that there is a 1-1 correspondence between our users and Twitter accounts

- uid \rightarrow uname, twitterid
- twitterid \rightarrow uid
- uid, gid \rightarrow fromDate

Not a good design, and we will see why shortly

Example of computing closure

- {gid, twitterid}+ = ?
- twitterid → uid
 - Add uid

uid → uname, twitterid twitterid → uid uid, gid → fromDate

- Closure grows to { gid, twitterid, uid }
- $uid \rightarrow uname$, twitterid
 - Add uname, twitterid
 - Closure grows to { gid, twitterid, uid, uname }

Using attribute closure

Given a relation R and set of FD's \mathcal{F}

- Does another FD $X \to Y$ follow from \mathcal{F} ?
 - Compute X^+ with respect to \mathcal{F}
 - If $Y \subseteq X^+$, then $X \to Y$ follows from \mathcal{F}
- Is *K* a key of *R*?
 - Compute K^+ with respect to \mathcal{F}
 - If K^+ contains all the attributes of R, K is a super key
 - Still need to verify that *K* is minimal (how?)

Rules of FD's

- Armstrong's axioms
 - Reflexivity: If $Y \subseteq X$, then $X \to Y$
 - Augmentation: If $X \to Y$, then $XZ \to YZ$ for any Z
 - Transitivity: If $X \to Y$ and $Y \to Z$, then $X \to Z$
- Rules derived from axioms
 - Splitting: If $X \to YZ$, then $X \to Y$ and $X \to Z$
 - Combining: If $X \to Y$ and $X \to Z$, then $X \to YZ$
- Using these rules, you can prove or disprove an FD given a set of FDs

Non-key FD's

- Consider a non-trivial FD X → Y where X is not a super key
 - Since X is not a super key, there are some attributes (say Z) that are not functionally determined by X

That *b* is associated with *a* is recorded multiple times: redundancy, update/insertion/deletion anomaly

Example of redundancy

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

• $uid \rightarrow uname$, twitterid

(... plus other FD's)

		twitterid	gid	fromDate
142	Bart	@BartJSimpson	dps	1987-04-19
123	Milhouse	@MilhouseVan_	gov	1989-12-17
857	Lisa	@lisasimpson	abc	1987-04-19
857	Lisa	@lisasimpson	gov	1988-09-01
456	Ralph	@ralphwiggum	abc	1991-04-25
456	Ralph	@ralphwiggum	gov	1992-09-01

Decomposition @BartJSimpson dps 1987-04-19 @MilhouseVan gov 1989-12-17 142 Bart 123 Milhouse 857 Lisa @lisasimpson 1987-04-19 857 Lisa 1988-09-01 @lisasimpson 456 Ralph @ralphwiggum 1991-04-25 456 Ralph @ralphwiggum 1992-09-01 142 Bart 123 Milhouse @BartJSimpson 142 dps 1987-04-19 @MilhouseVan 123 gov 1989-12-17 857 gov 1988-09-01 456 abc 1991-04-25 456 gov 1992-09-01 456 Ralph @ralphwiggum • Eliminates redundancy • To get back to the original relation:

Lossless join decomposition

- Decompose relation R into relations S and T
 - $attrs(R) = attrs(S) \cup attrs(T)$
 - $S = \pi_{attrs(S)}(R)$
 - $T = \pi_{attrs(T)}(R)$
- The decomposition is a lossless join decomposition if, given known constraints such as FD's, we can guarantee that $R=S\bowtie T$
- Any decomposition gives $R \subseteq S \bowtie T$ (why?)
 - A lossy decomposition is one with $R \subset S \bowtie T$

857 1988-09-01 456 1991-04-25 456 1992-09-01

Questions about decomposition

- When to decompose
- How to come up with a correct decomposition (i.e., lossless join decomposition)

An answer: BCNF

- A relation R is in Boyce-Codd Normal Form if
 - For every non-trivial FD $X \rightarrow Y$ in R, X is a super key
 - That is, all FDs follow from "key \rightarrow other attributes"
- When to decompose
 - As long as some relation is not in BCNF
- How to come up with a correct decomposition
 - Always decompose on a BCNF violation (details next)
 - Then it is guaranteed to be a lossless join decomposition!

BCNF decomposition algorithm

- Find a BCNF violation
 - That is, a non-trivial FD $X \to Y$ in R where X is not a super key of R
- Decompose R into R_1 and R_2 , where
 - R_1 has attributes $X \cup Y$
 - R_2 has attributes $X \cup Z$, where Z contains all attributes of R that are in neither X nor Y
- Repeat until all relations are in BCNF

BCNF decomposition example uid → uname, twitterid twitterid → uid uid, gid → fromDate UserJoinsGroup (uid, uname, twitterid, gid, fromDate) BCNF violation: uid → uname, twitterid User (uid, uname, twitterid) uid → uname, twitterid twitterid → uid BCNF BCNF

				24	
Another example		uid → uname, to twitterid → uid uid, gid → from			
UserJoinsGroup (uid, uname, twitterid, gid, fromDate)					
BCNF violation: twitte	rid → ui	d			
UserId (twitterid, uid)		•			
UserJoinsGroup' (twitterid, uname, gid, fromDate					
	twitterid - twitterid, į	→ uname gid → fromDate			
BCNF violation: twitterid → uname					
UserName (twitterid, uname)	Membe	er (twitterid,	gid, fro	omDate)	
BCNF		BCN		1	

Why is BCNF decomposition lossless

Given non-trivial $X \rightarrow Y$ in R where X is not a super key of R, need to prove:

- Anything we project always comes back in the join: $R \subseteq \pi_{XY}(R) \bowtie \pi_{XZ}(R)$
 - Sure; and it doesn't depend on the FD
- Anything that comes back in the join must be in the original relation: $R \supseteq \pi_{XY}(R) \bowtie \pi_{XZ}(R)$

• Proof will make use of the fact that $X \to Y$

Recap

- Functional dependencies: a generalization of the key concept
- Non-key functional dependencies: a source of redundancy
- BCNF decomposition: a method for removing redundancies
 - BNCF decomposition is a lossless join decomposition
- BCNF: schema in this normal form has no redundancy due to FD's

BCNF = no redundancy?

- User (uid, gid, place)
 - A user can belong to multiple groups
 - A user can register places she's visited
 - Groups and places have nothing to do with other
 - FD's?
 - BCNF?
 - Redundancies?

uid	gia	place
142	dps	Springfield
142	dps	Australia
456	abc	Springfield
456	abc	Morocco
456	gov	Springfield
456	gov	Morocco

-		
-		

Multivalued dependencies

- A multivalued dependency (MVD) has the form $X \rightarrow Y$, where X and Y are sets of attributes in a relation R
- $X \rightarrow Y$ means that whenever two rows in R agree on all the attributes of X, then we can swap their Y components and get two rows that are also in R <

MVD examples

User (uid, gid, place)

- uid --> gid
- uid → place
 - Intuition: given uid, gid and place are "independent"
- uid, gid → place
 - Trivial: LHS \cup RHS = all attributes of R
- uid, gid → uid
 - Trivial: LHS ⊇ RHS

Complete MVD + FD rules

- FD reflexivity, augmentation, and transitivity
- MVD complementation: If $X \rightarrow Y$, then $X \rightarrow attrs(R) - X - Y$
- MVD augmentation: If $X \rightarrow Y$ and $V \subseteq W$, then $XW \rightarrow YV$
- MVD transitivity: If X woheadrightarrow Y and Y woheadrightarrow Z, then X woheadrightarrow Z Y
- Replication (FD is MVD): If $X \to Y$, then $X \twoheadrightarrow Y$ Try proving things using these!?
- If $X \rightarrow Y$ and $Z \subseteq Y$ and there is some W disjoint from Y such that $W \rightarrow Z$, then $X \rightarrow Z$

An elegant solution: chase

- Given a set of FD's and MVD's \mathcal{D} , does another dependency d (FD or MVD) follow from \mathcal{D} ?
- - \bullet Start with the premise of $\emph{d}\text{,}$ and treat them as "seed" tuples in a relation
 - Apply the given dependencies in $\ensuremath{\mathcal{D}}$ repeatedly
 - If we apply an FD, we infer equality of two symbols
 - If we apply an MVD, we infer more tuples
 - If we infer the conclusion of d, we have a proof
 - Otherwise, if nothing more can be inferred, we have a

Proof by chase

• In R(A, B, C, D), does $A \rightarrow B$ and $B \rightarrow C$ imply that $A \twoheadrightarrow C$?

a b_2 c_2 d_1

 $B \twoheadrightarrow C \quad a \quad b_1 \quad c_2 \quad d_1$ a b_1 c_1 d_2

?
Have:
$$A \ B \ C \ D$$
 $a \ b_1 \ c_1 \ d_1$
 $a \ b_2 \ c_2 \ d_2$
 $A \rightarrow B \ B \ b_2 \ c_1 \ d_1$
 $a \ b_1 \ c_2 \ d_2$
 $a \ b_2 \ c_1 \ d_2$
 $a \ b_2 \ c_1 \ d_2$
 $a \ b_2 \ c_2 \ d_2$

Another proof by chase

• In R(A, B, C, D), does $A \rightarrow B$ and $B \rightarrow C$ imply that

In general, with both MVD's and FD's, chase can generate both new tuples and new equalities

Counterexample by chase

• In R(A, B, C, D), does $A \rightarrow BC$ and $CD \rightarrow B$ imply that $A \rightarrow B$?

Have:
$$\begin{array}{c|cccc}
A & B & C & D \\
\hline
 & a & b_1 & c_1 & d_1 \\
 & a & b_2 & c_2 & d_2
\end{array}$$

 $b_1 = b_2$

 $A \twoheadrightarrow BC \quad \begin{array}{c} a & b_2 & c_2 & d_1 \\ a & b_1 & c_1 & d_2 \end{array}$

Counterexample!

4NF

- A relation R is in Fourth Normal Form (4NF) if
 - For every non-trivial MVD $X \rightarrow Y$ in R, X is a superkey
 - That is, all FD's and MVD's follow from "key → other attributes" (i.e., no MVD's and no FD's besides key functional dependencies)
- 4NF is stronger than BCNF
 - Because every FD is also a MVD

4NF decomposition algorithm

- Find a 4NF violation
 - A non-trivial MVD $X \rightarrow Y$ in R where X is not a superkey
- Decompose R into R_1 and R_2 , where
 - R_1 has attributes $X \cup Y$
 - R_2 has attributes $X \cup Z$ (where Z contains R attributes not in X or Y)
- Repeat until all relations are in 4NF
- Almost identical to BCNF decomposition algorithm
- Any decomposition on a 4NF violation is lossless

Summary

Philosophy behind BCNF, 4NF:
 Data should depend on the key,
 the whole key,
 and nothing but the key!

- Other normal forms
 - 3NF: More relaxed than BCNF; will not remove redundancy if doing so makes FDs harder to enforce
 - 2NF: Slightly more relaxed than 3NF
 - 1NF: All column values must be atomic

