Relational Database Design Theory

Introduction to Databases
CompSci 316 Fall 2016
Announcements (Thu. Sep. 15)

• Homework #1 due next Tuesday (11:59pm)

• Course project description posted
 • Milestone #1 right after fall break
 • Teamwork required: 4 people per team
Motivation

- Why is UserGroup \((uid, uname, gid)\) a bad design?
 - It has redundancy—user name is recorded multiple times, once for each group that a user belongs to
 - Leads to update, insertion, deletion anomalies
- Wouldn’t it be nice to have a systematic approach to detecting and removing redundancy in designs?
 - Dependencies, decompositions, and normal forms
Functional dependencies

- A functional dependency (FD) has the form $X \rightarrow Y$, where X and Y are sets of attributes in a relation R.
- $X \rightarrow Y$ means that whenever two tuples in R agree on all the attributes in X, they must also agree on all attributes in Y.

```
<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>?</td>
</tr>
</tbody>
</table>
```

- Must be b.
- Could be anything.
FD examples

Address (street_address, city, state, zip)

• street_address, city, state → zip
• zip → city, state
• zip, state → zip?
 • This is a trivial FD
 • Trivial FD: LHS ⊇ RHS
• zip → state, zip?
 • This is non-trivial, but not completely non-trivial
 • Completely non-trivial FD: LHS ∩ RHS = ø
Redefining “keys” using FD’s

A set of attributes K is a key for a relation R if

- $K \rightarrow$ all (other) attributes of R
 - That is, K is a “super key”
- No proper subset of K satisfies the above condition
 - That is, K is minimal
Reasoning with FD’s

Given a relation R and a set of FD’s \mathcal{F}

- Does another FD follow from \mathcal{F}?
 - Are some of the FD’s in \mathcal{F} redundant (i.e., they follow from the others)?

- Is K a key of R?
 - What are all the keys of R?
Attribute closure

• Given R, a set of FD’s \mathcal{F} that hold in R, and a set of attributes Z in R:
 The closure of Z (denoted Z^+) with respect to \mathcal{F} is the set of all attributes $\{A_1, A_2, \ldots\}$ functionally determined by Z (that is, $Z \rightarrow A_1A_2\ldots$)

• Algorithm for computing the closure
 • Start with closure $= Z$
 • If $X \rightarrow Y$ is in \mathcal{F} and X is already in the closure, then also add Y to the closure
 • Repeat until no new attributes can be added
A more complex example

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

Assume that there is a 1-1 correspondence between our users and Twitter accounts

• $uid \rightarrow \text{uname, twitterid}$
• $\text{twitterid} \rightarrow uid$
• $uid, gid \rightarrow \text{fromDate}$

Not a good design, and we will see why shortly
Example of computing closure

- \(\{gid, twitterid\}^+ = ? \)

- \(twitterid \rightarrow uid \)
 - Add \(uid \)
 - Closure grows to \(\{gid, twitterid, uid\} \)

- \(uid \rightarrow\) \(uname, twitterid \)
 - Add \(uname, twitterid \)
 - Closure grows to \(\{gid, twitterid, uid, uname\} \)

- \(uid, gid \rightarrow fromDate \)
 - Add \(fromDate \)
 - Closure is now all attributes in UserJoinsGroup

\[F \text{ includes:} \]
- \(uid \rightarrow\) \(uname, twitterid \)
- \(twitterid \rightarrow\) \(uid \)
- \(uid, gid \rightarrow fromDate \)
Using attribute closure

Given a relation R and set of FD’s \mathcal{F}

• Does another FD $X \rightarrow Y$ follow from \mathcal{F}?
 • Compute X^+ with respect to \mathcal{F}
 • If $Y \subseteq X^+$, then $X \rightarrow Y$ follows from \mathcal{F}

• Is K a key of R?
 • Compute K^+ with respect to \mathcal{F}
 • If K^+ contains all the attributes of R, K is a super key
 • Still need to verify that K is minimal (how?)
Rules of FD’s

• **Armstrong’s axioms**
 - **Reflexivity**: If $Y \subseteq X$, then $X \rightarrow Y$
 - **Augmentation**: If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z
 - **Transitivity**: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$

• **Rules derived from axioms**
 - **Splitting**: If $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$
 - **Combining**: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$

Using these rules, you can prove or disprove an FD given a set of FDs
Non-key FD’s

• Consider a non-trivial FD $X \rightarrow Y$ where X is not a super key
 • Since X is not a super key, there are some attributes (say Z) that are not functionally determined by X

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c₁</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>c₂</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

That b is associated with a is recorded multiple times: redundancy, update/insertion/deletion anomaly
Example of redundancy

UserJoinsGroup \((uid, uname, twitterid, gid, fromDate)\)

- \(uid \rightarrow uname, twitterid\)

(... plus other FD’s)

<table>
<thead>
<tr>
<th>uid</th>
<th>uname</th>
<th>twitterid</th>
<th>gid</th>
<th>fromDate</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>@BartJSimpson</td>
<td>dps</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>@MilhouseVan_</td>
<td>gov</td>
<td>1989-12-17</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>@lisasimpson</td>
<td>abc</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>@lisasimpson</td>
<td>gov</td>
<td>1988-09-01</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>@ralphwiggum</td>
<td>abc</td>
<td>1991-04-25</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>@ralphwiggum</td>
<td>gov</td>
<td>1992-09-01</td>
</tr>
</tbody>
</table>

...

...

...
Decomposition

<table>
<thead>
<tr>
<th>uid</th>
<th>uname</th>
<th>twitterid</th>
<th>gid</th>
<th>fromDate</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>@BartJSimpon</td>
<td>dps</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>@MilhouseVan_</td>
<td>gov</td>
<td>1989-12-17</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>@lisasimpson</td>
<td>abc</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>@lisasimpson</td>
<td>gov</td>
<td>1988-09-01</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>@ralphwiggum</td>
<td>abc</td>
<td>1991-04-25</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>@ralphwiggum</td>
<td>gov</td>
<td>1992-09-01</td>
</tr>
</tbody>
</table>

• Eliminates redundancy
• To get back to the original relation: ⚫
Unnecessary decomposition

<table>
<thead>
<tr>
<th>uid</th>
<th>uname</th>
<th>twitterid</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>@BartJ Simpson</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>@Milhouse Van_</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>@lisasimpson</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>@ralphwiggum</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- Fine: join returns the original relation
- Unnecessary: no redundancy is removed; schema is more complicated (and uid is stored twice!)
Bad decomposition

- Association between `gid` and `fromDate` is lost
- Join returns more rows than the original relation
Lossless join decomposition

- Decompose relation R into relations S and T
 - $\text{attrs}(R) = \text{attrs}(S) \cup \text{attrs}(T)$
 - $S = \pi_{\text{attrs}(S)}(R)$
 - $T = \pi_{\text{attrs}(T)}(R)$
- The decomposition is a **lossless join decomposition** if, given known constraints such as FD’s, we can guarantee that $R = S \bowtie T$

- Any decomposition gives $R \subseteq S \bowtie T$ (why?)
 - A **lossy** decomposition is one with $R \subset S \bowtie T$
Loss? But I got more rows!

• “Loss” refers not to the loss of tuples, but to the loss of information
 • Or, the ability to distinguish different original relations

 No way to tell which is the original relation

<table>
<thead>
<tr>
<th>uid</th>
<th>gid</th>
<th>fromDate</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>dps</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>123</td>
<td>gov</td>
<td>1989-12-17</td>
</tr>
<tr>
<td>857</td>
<td>abc</td>
<td>1988-09-01</td>
</tr>
<tr>
<td>857</td>
<td>gov</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>456</td>
<td>abc</td>
<td>1991-04-25</td>
</tr>
<tr>
<td>456</td>
<td>gov</td>
<td>1992-09-01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>uid</th>
<th>fromDate</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>123</td>
<td>1989-12-17</td>
</tr>
<tr>
<td>857</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>857</td>
<td>1988-09-01</td>
</tr>
<tr>
<td>456</td>
<td>1991-04-25</td>
</tr>
<tr>
<td>456</td>
<td>1992-09-01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>uid</th>
<th>gid</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>dps</td>
</tr>
<tr>
<td>123</td>
<td>gov</td>
</tr>
<tr>
<td>857</td>
<td>abc</td>
</tr>
<tr>
<td>857</td>
<td>gov</td>
</tr>
<tr>
<td>456</td>
<td>abc</td>
</tr>
<tr>
<td>456</td>
<td>gov</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Questions about decomposition

• When to decompose

• How to come up with a correct decomposition (i.e., lossless join decomposition)
An answer: BCNF

• A relation R is in **Boyce-Codd Normal Form** if
 • For every non-trivial FD $X \rightarrow Y$ in R, X is a super key
 • That is, all FDs follow from “key \rightarrow other attributes”

• When to decompose
 • As long as some relation is not in BCNF

• How to come up with a correct decomposition
 • Always decompose on a BCNF violation (details next)

 \Box Then it is guaranteed to be a lossless join decomposition!
BCNF decomposition algorithm

• Find a BCNF violation
 • That is, a non-trivial FD $X \rightarrow Y$ in R where X is not a super key of R
• Decompose R into R_1 and R_2, where
 • R_1 has attributes $X \cup Y$
 • R_2 has attributes $X \cup Z$, where Z contains all attributes of R that are in neither X nor Y
• Repeat until all relations are in BCNF
BCNF decomposition example

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

BCNF violation: $uid \rightarrow uname, twitterid$

User (uid, uname, twitterid)

uid \rightarrow uname, twitterid

BCNF

Member (uid, gid, fromDate)

uid, gid \rightarrow fromDate

BCNF
Another example

UserJoinsGroup \((uid, \text{uname}, \text{twitterid}, \text{gid}, \text{fromDate})\)

- BCNF violation: \(\text{twitterid} \rightarrow \text{uid}\)

UserId \((\text{twitterid}, \text{uid})\)

- BCNF

UserJoinsGroup’ \((\text{twitterid}, \text{uname}, \text{gid}, \text{fromDate})\)

- BCNF violation: \(\text{twitterid} \rightarrow \text{uname}\)

UserName \((\text{twitterid}, \text{uname})\)

- BCNF

Member \((\text{twitterid}, \text{gid}, \text{fromDate})\)

- BCNF

\(\text{uid} \rightarrow \text{uname}, \text{twitterid}\)

\(\text{twitterid} \rightarrow \text{uid}\)

\(\text{uid}, \text{gid} \rightarrow \text{fromDate}\)
Why is BCNF decomposition lossless

Given non-trivial $X \rightarrow Y$ in R where X is not a super key of R, need to prove:

- Anything we project always comes back in the join:
 \[R \subseteq \pi_{XY}(R) \bowtie \pi_{XZ}(R) \]
 - Sure; and it doesn’t depend on the FD

- Anything that comes back in the join must be in the original relation:
 \[R \supseteq \pi_{XY}(R) \bowtie \pi_{XZ}(R) \]
 - Proof will make use of the fact that $X \rightarrow Y$
Recap

• Functional dependencies: a generalization of the key concept

• Non-key functional dependencies: a source of redundancy

• BCNF decomposition: a method for removing redundancies
 • BNCF decomposition is a lossless join decomposition

• BCNF: schema in this normal form has no redundancy due to FD’s
BCNF = no redundancy?

• User \((uid, gid, place)\)
 - A user can belong to multiple groups
 - A user can register places she’s visited
 - Groups and places have nothing to do with other
 - FD’s?
 - None
 - BCNF?
 - Yes
• Redundancies?
 - Tons!

<table>
<thead>
<tr>
<th>(uid)</th>
<th>(gid)</th>
<th>(place)</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>dps</td>
<td>Springfield</td>
</tr>
<tr>
<td>142</td>
<td>dps</td>
<td>Australia</td>
</tr>
<tr>
<td>456</td>
<td>abc</td>
<td>Springfield</td>
</tr>
<tr>
<td>456</td>
<td>abc</td>
<td>Morocco</td>
</tr>
<tr>
<td>456</td>
<td>gov</td>
<td>Springfield</td>
</tr>
<tr>
<td>456</td>
<td>gov</td>
<td>Morocco</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
</tbody>
</table>
Multivalued dependencies

• A multivalued dependency (MVD) has the form $X \rightarrow Y$, where X and Y are sets of attributes in a relation R

• $X \rightarrow Y$ means that whenever two rows in R agree on all the attributes of X, then we can swap their Y components and get two rows that are also in R

$$
\begin{array}{|c|c|c|}
\hline
X & Y & Z \\
\hline
a & b_1 & c_1 \\
\hline
a & b_2 & c_2 \\
\hline
a & b_2 & c_1 \\
\hline
a & b_1 & c_2 \\
\hline
\ldots & \ldots & \ldots \\
\hline
\end{array}
$$
MVD examples

User (uid, gid, place)
• uid \rightarrow gid
• uid \rightarrow place
 • Intuition: given uid, gid and place are “independent”
• uid, gid \rightarrow place
 • Trivial: LHS \cup RHS = all attributes of R
• uid, gid \rightarrow uid
 • Trivial: LHS \supseteq RHS
Complete MVD + FD rules

• FD reflexivity, augmentation, and transitivity

• MVD complementation:
 If $X \rightarrow Y$, then $X \rightarrow \text{attrs}(R) - X - Y$

• MVD augmentation:
 If $X \rightarrow Y$ and $V \subseteq W$, then $XW \rightarrow YV$

• MVD transitivity:
 If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z - Y$

• Replication (FD is MVD):
 If $X \rightarrow Y$, then $X \rightarrow Y$

• Coalescence:
 If $X \rightarrow Y$ and $Z \subseteq Y$ and there is some W disjoint from Y such that $W \rightarrow Z$, then $X \rightarrow Z$

Try proving things using these!?
An elegant solution: chase

• Given a set of FD’s and MVD’s \mathcal{D}, does another dependency d (FD or MVD) follow from \mathcal{D}?

• Procedure
 • Start with the premise of d, and treat them as “seed” tuples in a relation
 • Apply the given dependencies in \mathcal{D} repeatedly
 • If we apply an FD, we infer equality of two symbols
 • If we apply an MVD, we infer more tuples
 • If we infer the conclusion of d, we have a proof
 • Otherwise, if nothing more can be inferred, we have a counterexample
Proof by chase

- In $R(A, B, C, D)$, does $A \rightarrow B$ and $B \rightarrow C$ imply that $A \rightarrow C$?

<table>
<thead>
<tr>
<th>Have:</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b_1</td>
<td>c_1</td>
<td>d_1</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>b_2</td>
<td>c_2</td>
<td>d_2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Need:</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b_1</td>
<td>c_2</td>
<td>d_1</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>b_2</td>
<td>c_1</td>
<td>d_2</td>
<td></td>
</tr>
</tbody>
</table>
Another proof by chase

• In $R(A, B, C, D)$, does $A \rightarrow B$ and $B \rightarrow C$ imply that $A \rightarrow C$?

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b_1</td>
<td>c_1</td>
<td>d_1</td>
</tr>
<tr>
<td>a</td>
<td>b_2</td>
<td>c_2</td>
<td>d_2</td>
</tr>
</tbody>
</table>

Have: $A \rightarrow B$ \hspace{1cm} $B \rightarrow C$

Need: $c_1 = c_2 \checkmark$

In general, with both MVD’s and FD’s, chase can generate both new tuples and new equalities
Counterexample by chase

- In $R(A, B, C, D)$, does $A \rightarrow BC$ and $CD \rightarrow B$ imply that $A \rightarrow B$?

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>b_1</td>
<td>c_1</td>
<td>d_1</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>b_2</td>
<td>c_2</td>
<td>d_2</td>
</tr>
<tr>
<td>3</td>
<td>a</td>
<td>b_2</td>
<td>c_2</td>
<td>d_1</td>
</tr>
<tr>
<td>4</td>
<td>a</td>
<td>b_1</td>
<td>c_1</td>
<td>d_2</td>
</tr>
</tbody>
</table>

Have: $A \rightarrow BC$

Need: $b_1 = b_2$ ❌

Counterexample!
4NF

- A relation R is in **Fourth Normal Form (4NF)** if
 - For every non-trivial MVD $X \rightarrow Y$ in R, X is a superkey
 - That is, all FD’s and MVD’s follow from “key \rightarrow other attributes” (i.e., no MVD’s and no FD’s besides key functional dependencies)

- 4NF is stronger than BCNF
 - Because every FD is also a MVD
4NF decomposition algorithm

• Find a 4NF violation
 • A non-trivial MVD $X \rightarrow Y$ in R where X is not a superkey
• Decompose R into R_1 and R_2, where
 • R_1 has attributes $X \cup Y$
 • R_2 has attributes $X \cup Z$ (where Z contains R attributes not in X or Y)
• Repeat until all relations are in 4NF

• Almost identical to BCNF decomposition algorithm
• Any decomposition on a 4NF violation is lossless
4NF decomposition example

User \((uid, gid, place)\)

4NF violation: \(uid \rightarrow gid\)

Member \((uid, gid)\)

4NF

\[
\begin{array}{|c|c|}
\hline
uid & gid \\
\hline
142 & dps \\
456 & abc \\
456 & gov \\
\ldots & \ldots \\
\hline
\end{array}
\]

Visited \((uid, place)\)

4NF

\[
\begin{array}{|c|c|}
\hline
uid & place \\
\hline
142 & Springfield \\
142 & Australia \\
456 & Springfield \\
456 & Morocco \\
\ldots & \ldots \\
\hline
\end{array}
\]
Summary

• Philosophy behind BCNF, 4NF: Data should depend on the key, the whole key, and nothing but the key!
 • You could have multiple keys though

• Other normal forms
 • 3NF: More relaxed than BCNF; will not remove redundancy if doing so makes FDs harder to enforce
 • 2NF: Slightly more relaxed than 3NF
 • 1NF: All column values must be atomic