SQL: Part |

Introduction to Databases
CompSci 316 Fall 2016

E. DUKE
COMPUTER SCIENCE

9/20/16

Announcements (Tue. Sep. 20)

* Homework #2 assigned

* Project mixer next Tuesday in class; details to
follow in email

sqQL

* SQL:
* Pronounced “S-Q-L” or “sequel”
* The standard query language supported by most DBMS

* A brief history
* IBM System R
« ANSI SQL89
« ANSI SQL92 (SQL2)
* ANSI SQL99 (SQL3)
* ANSI SQL 2003 (added OLAP, XML, etc.)
« ANSI SQL 2006 (added more XML)
* ANSI SQL 2008, ...

Creating and dropping tables

table_name
(.., column_name column_type, ..);

table_name;

* Examples

create table User(uid integer, name varchar(30),
age integer, pop float);

create table Group(gid char(10), name varchar(100));
create table Member(uid integer, gid char(10));
drop table Member;
drop table Group;
drop table User;
-- everything from -- to the end of line is ignored.
-- SQL is insensitive to white space.
-- SQL is insensitive to case (e.g., ...Group... is
-- equivalent to ...GROUP...)

9/20/16

Basic queries: SFW statement

Ayy Azy sy Ay
Riy Ryy .y Ry
condition
* Also called an SPJ (select-project-join) query
* Corresponds to ()
relational algebra query:

T4, Ay, Ay (Ucondition(R1XR2 X "'XRm))

Example: reading a table

* Single-table query, so no cross product here
clause is optional
is a short hand for “all columns”

Example: selection and projection
* Name of users under 18

* When was Lisa born?

* SELECT list can contain expressions
« Can also use built-in functions such as SUBSTR, ABS, etc.

+ String literals (case sensitive) are enclosed in

9/20/16

Example: join

* ID’s and names of groups with a user whose name
contains “Simpson”

matches a string against a pattern
« 7 matches any sequence of zero or more characters
* Okay to omit table_name in table_name. column_name if
column_nameis unique

Example: rename

* ID’s of all pairs of users that belong to one group
* Relational algebra query:
Tmy uid,my.uid
(pmlMember Yo, .gid=my.gid Amq uid>myp.uid pszember)

. sqQL:
SELECT ml.uid , m2.uid
FROM Member , Member

WHERE ml.gid = m2.gid
AND ml.uid > m2.uid;
keyword is completely optional

A more complicated example

* Names of all groups that Lisa and Ralph are both in

Tip: Write the FROM clause first, then WHERE, and
then SELECT

9/20/16

Why SFW statements?

* Out of many possible ways of structuring SQL
statements, why did the designers choose
SELECT-FROM-WHERE?

* Alarge number of queries can be written using only
selection, projection, and cross product (or join)
* Any query that uses only these operators can be written
in a canonical form:
* Example: nR‘A,S‘H(R [P S) LI (nTbcamT)
= TRoas. B.T,Co_‘pﬂ\pz/\pg(RxsxT)

* SELECT-FROM-WHERE captures this canonical form

Set versus bag semantics

* Set

* No duplicates

* Relational model and algebra use set semantics
* Bag

* Duplicates allowed

* Number of duplicates is significant

* SQL uses bag semantics by default

Set versus bag example

n'gmMemberm
dps
gov
Member [TINEZN abe

142 dps
123 gov
857 abc
857 gov SELECT gid m
456 abc FROM Member; dps
456 gov gov

9/20/16

A case for bag semantics

* Efficiency
* Saves time of eliminating duplicates

* Which one is more useful?

* The first query just returns
* The second query returns

* Besides, SQL provides the option of set semantics
with keyword

Forcing set semantics

* ID’s of all pairs of users that belong to one group

* SELECT ml.uid AS uidl, m2.uid
AS uid2 ..

* With DISTINCT, all duplicate (uid1, uid2) pairs are removed
from the output

Semantics of SFW

* Foreach t; in Ry:
Foreachtyin Ry
For each t,; in Ryt
If condition is true over ty, ty, ..., t;,:
Compute and output Ey, E5, ..., E, as arow
If DISTINCT is present
Eliminate duplicate rows in output

* tq, ty, ..., tyy are often called

9/20/16

SQL set and bag operations

’

* Set semantics

 Duplicates in input tables, if any, are first eliminated
* Duplicates in result are also eliminated (for UNION)
* Exactly like set U, —, and N in relational algebra

t

* Bag semantics

’

* Think of each row as having an implicit (the
number of times it appears in the table)

up the counts from two tables
the two counts

* Bag union:

* Bag difference:

* Bag intersection: take the

of the two counts

Examples of bag operations

Bagl Bag2

apple apple
apple orange

orange orange

(SELECT * FROM Bagl)

(SELECT * FROM Bag2);

fruit
apple
apple
orange
apple
orange

orange

(SELECT * FROM Bagl)

(SELECT * FROM Bag2);

apple

(SELECT * FROM Bagl)
(SELECT * FROM Bag2);
apple

orange

Examples of set versus bag operations

Poke (uid1, uid2, timestamp)
* (SELECT uidl FROM Poke)

(SELECT uid2 FROM Poke);

* Users who

* (SELECT uidl FROM Poke)

(SELECT uid2 FROM Poke);

* Users who

9/20/16

SQL features covered so far

* SELECT-FROM-WHERE statements (select-project-
join queries)

* Set and bag operations

& Next: how to nest SQL queries

Table subqueries

* Use query result as a table
* In set and bag operations, FROM clauses, etc.
* Away to “nest” queries

* Example: names of users who poked others more
than others poked them

e SELECT DISTINCT name
FROM User,
((SELECT uidl AS uid FROM Poke)
EXCEPT ALL
(SELECT uid2 AS uid FROM Poke))
AS T
WHERE User.uid = T.uid;

Scalar subqueries

* A query that returns a single row can be used as a
value in WHERE, SELECT, etc.

* Example: users at the same age as Bart

* SELECT *
FROM User What’s Bart’s age?
WHERE age = (SELECT age

FROM User
WHERE name = 'Bart');
* Runtime error if subquery returns more than one row
* Under what condition will this error never occur?
* What if the subquery returns no rows?

« The answer is treated as a special value NULL, and the
comparison with NULL will fail

9/20/16

IN subqueries

. checks if x is in the result of
subquery
* Example: users at the same age as (some) Bart
* SELECT *
FROM User What’s Bart’s age?
WHERE age (SELECT age
FROM User

WHERE name = 'Bart');

EXISTS subqueries

checks if the result of
subquery is non-empty
* Example: users at the same age as (some) Bart

* SELECT *
FROM Users AS u
WHERE (SELECT * FROM User

WHERE name = 'Bart'
AND age = u.age);
* This happens to be a subquery
that references tuple variables in surrounding queries

Semantics of subqueries

* SELECT *

FROM Users AS

WHERE EXISTS (SELECT * FROM User
WHERE name = 'Bart'
AND age =)

* ForeachrowuinUser
* Evaluate the subquery with the value of u. age
* If the result of the subquery is not empty, output u. *
* The DBMS query optimizer may choose to process
the query in an equivalent, but more efficient way
(example?)

9/20/16

Scoping rule of subqueries

* To find out which table a column belongs to
* Start with the immediately surrounding query
* If not found, look in the one surrounding that; repeat if
necessary
* Use table_name. column_name notation and AS
(renaming) to avoid confusion

Another example

* SELECT * FROM User u
WHERE EXISTS
(SELECT_*_FROM Member m
WHERE |uid = u.uid
AND EXISTS
(SELECT—*_FROM Member
WHERE |uid = u.uid
AND gid <> m.gid));
* Users who

Quantified subqueries

* A quantified subquery can be used syntactically as a
value in a WHERE condition
(for all):
.. WHERE x op (subquery)
* Trueiff for all t in the result of subquery, x op t
(exists):
.. WHERE x op (subquery)
* True iff there exists some t in subquery result such that
xopt
“ Beware
* In common parlance, “any” and “all” seem to be synonyms
« In SQL, ANY really means “some”

9/20/16

Examples of quantified subqueries

* Which users are the most popular?

* SELECT *
FROM User
WHERE pop >= (SELECT pop FROM User);

* SELECT *

FROM User

WHERE NOT
(pop < (SELECT pop FROM User);

@ Use NOT to negate a condition

More ways to get the most popular

* Which users are the most popular?

* SELECT *
FROM User AS u
WHERE NOT

* SELECT * FROM User

WHERE uid
(SELECT ul.uid
FROM User AS ul, User AS u2
WHERE ul.pop < u2.pop);

10

SQL features covered so far

* SELECT-FROM-WHERE statements
* Set and bag operations

* Subqueries
* Subqueries allow queries to be written in more
declarative ways (recall the “most popular” query)
* But in many cases they don’t add expressive power

* Try translating other forms of subqueries into [NOT] EXISTS,
which in turn can be translated into join (and difference)
* Watch out for number of duplicates though

& Next: aggregation and grouping

9/20/16

Aggregates

* Standard SQL aggregate functions: , ,
’ ’
» Example: number of users under 18, and their
average popularity
» SELECT ,
FROM User
WHERE age < 18;
¢ COUNT (*) counts the number of rows

Aggregates with DISTINCT

* Example: How many users are in some group?

* SELECT COUNT (uid)
FROM Member;
is equivalent to:
* SELECT COUNT (*)
FROM (SELECT DISTINCT uid FROM Member);

11

Grouping

* SELECT .. FROM .. WHERE ..

b

* Example: compute average popularity for
each age group
* SELECT age, AVG(pop)
FROM User
GROUP BY age;

9/20/16

Semantics of GROUP BY

+ Compute FROM (X)
» Compute WHERE (o)

» Compute GROUP BY: group rows according to the
values of GROUP BY columns

» Compute SELECT for each group ()

* For aggregation functions with DISTINCT inputs, first
eliminate duplicates within the group

& Number of groups =
number of rows in the final output

Example of computing GROUP BY

SELECT age, AVG(pop) FROM User GROUP BY age;

???? Compute GROUP BY: group
8570 |Lisa o rows according to the values
123 Milhouse 10 0.2 of GROUP BY columns
456 Ralph 8 0.3 mmm
» 142 Bart 10 0.9
Compute SELECT 123 Milhouse 10 0.2
for each group 857 Lisa 8 0.7
_ 456 Ralph 8 0.3
10 0.55
8 0.50

12

Aggregates with no GROUP BY

* An aggregate query with no GROUP BY clause =
all rows go into one group

SELECT AVG(pop) FROM User;

Group all rows Aggregate over
into one group the whole group

vid [name | age [pop [uid |name __age |pop_|

142 Bart 10 0.9 142 Bart 10 0.9
857 Lisa 8 0.7 857 Lisa 8 0.7 0.525
123 Milhouse 10 0.2 123 Milhouse 10 0.2

456 Ralph 8 0.3 456 Ralph 8 0.3

9/20/16

Restriction on SELECT

* If a query uses aggregation/group by, then every
column referenced in SELECT must be either
* Aggregated, or
* AGROUP BY column
< This restriction ensures that any SELECT
expression produces only one value for each group

Examples of invalid queries

\
. sELECT JBS Cage
FROM User GROUP BY age;
* Recall there is one output row per group
* There can beg&ljtiple uid values per group

- SELECT ¥4, MAX(pop) FROM User;

* Recall there is only one group for an aggregate query
with no GROUP BY clause

* There can be multiple uid values

* Wishful thinking (that the output uid value is the one
associated with the highest popularity) does NOT work

& Another way of writing the “most popular” query?

13

HAVING

* Used to filter groups based on the group properties
(e.g., aggregate values, GROUP BY column values)
* SELECT .. FROM .. WHERE .. GROUP BY ..

’

+ Compute FROM (X)

» Compute WHERE (o)

* Compute GROUP BY: group rows according to the values
of GROUP BY columns

» Compute HAVING (another o over the groups)

+ Compute SELECT () for each group that passes
HAVING

9/20/16

HAVING examples

* List the average popularity for each age group with
more than a hundred users
* SELECT age, AVG(pop)
FROM User
GROUP BY age
COUNT(*) > 100;
* Can be written using WHERE and table subqueries
* Find average popularity for each age group over 10

* SELECT age, AVG(pop)
FROM User
GROUP BY age
age > 10;
* Can be written using WHERE without table subqueries

SQL features covered so far

* SELECT-FROM-WHERE statements
* Set and bag operations
* Subqueries

* Aggregation and grouping
* More expressive power than relational algebra

“ Next: ordering output rows

14

ORDER BY

* SELECT [DISTINCT] ..

FROM .. WHERE .. GROUP BY .. HAVING ..
5

* ASC = ascending, DESC = descending

» Semantics: After SELECT list has been computed
and optional duplicate elimination has been carried
out, sort the output according to ORDER BY
specification

9/20/16

ORDER BY example

* List all users, sort them by popularity (descending)
and name (ascending)

* SELECT uid, name, age, pop

FROM User
b

* ASC is the default option

* Strictly speaking, only output columns can appear in
ORDER BY clause (although some DBMS support more)

* Can use sequence numbers instead of names to refer to
output columns: H

SQL features covered so far

* SELECT-FROM-WHERE statements
* Set and bag operations

* Subqueries

* Aggregation and grouping

* Ordering

& Next: NULL’s, outerjoins, data modification,
constraints, ...

15

