
9/22/16

1

SQL: Part II
Introduction to Databases

CompSci 316 Fall 2016

Announcements (Thu., Sep. 22)

• Homework #1 sample solution to be posted on 
Sakai tonight
• Homework #2 due in 1½ weeks
• Project mixer next Tuesday
• Seating will be randomized (see instructions in email)
• Pitches to the class (limited 5 minutes each): reserve 

your slot & submit your slides under proj-mixer
• Discussion

2

Incomplete information

• Example: User (uid, name, age, pop)
• Value unknown
• We do not know Nelson’s age

• Value not applicable
• Suppose pop is based on interactions with others on our 

social networking site
• Nelson is new to our site; what is his pop?

3



9/22/16

2

Solution 1

• Dedicate a value from each domain (type)
• pop cannot be −1, so use −1 as a special value to 

indicate a missing or invalid pop
• Leads to incorrect answers if not careful

• SELECT AVG(pop) FROM User;

• Complicates applications
• SELECT AVG(pop) FROM User
WHERE pop <> -1;

• Perhaps the value is not 
as special as you think!
• Ever heard of the Y2K bug? 

“00” was used as a 
missing or invalid year value

4

http://www.90s411.com/images/y2k-cartoon.jpg

Solution 2

• A valid-bit for every column
• User (uid, name, name_is_valid,

age, age_is_valid,
pop, pop_is_valid)

• Complicates schema and queries
• SELECT AVG(pop) FROM User
WHERE pop_is_valid;

5

Solution 3

• Decompose the table; missing row = missing value
• UserName (uid, name)

UserAge (uid, age)
UserPop (uid, pop)
• UserID (uid)
• Conceptually the cleanest solution
• Still complicates schema and queries

• How to get all information about users in a table?

6



9/22/16

3

SQL’s solution

• A special value NULL
• For every domain
• Special rules for dealing with NULL’s

• Example: User (uid, name, age, pop)
• 789, “Nelson”, NULL, NULL

7

Computing with NULL’s

• When we operate on a NULL and another value 
(including another NULL) using +, −, etc., the 
result is NULL

• Aggregate functions ignore NULL, except 
COUNT(*) (since it counts rows)

8

Three-valued logic

• TRUE = 1, FALSE = 0, UNKNOWN = 0.5
• 𝑥 AND 𝑦 = min	(𝑥, 𝑦)
• 𝑥 OR 𝑦 = max	(𝑥, 𝑦)
• NOT 𝑥 = 1 − 𝑥
• When we compare a NULL with another value 

(including another NULL) using =, >, etc., the 
result is UNKNOWN
• WHERE and HAVING clauses only select rows for 

output if the condition evaluates to TRUE
• UNKNOWN is not enough

9



9/22/16

4

Unfortunate consequences

• SELECT AVG(pop) FROM User;
SELECT SUM(pop)/COUNT(*) FROM User;

• SELECT * FROM User;
SELECT * FROM User WHERE pop = pop;

FBe careful: NULL breaks many equivalences

10

Another problem

• Example: Who has NULL pop values?
• SELECT * FROM User WHERE pop = NULL;

• SQL introduced special, built-in predicates 
IS NULL and IS NOT NULL
• SELECT * FROM User WHERE pop IS NULL;

11

Outerjoin motivation

• Example: a master group membership list
• SELECT g.gid, g.name AS gname, 

u.uid, u.name AS uname
FROM Group g, Member m, User u
WHERE g.gid = m.gid AND m.uid = u.uid;
• What if a group is empty?
• It may be reasonable for the master list to include empty 

groups as well
• For these groups, uid and uname columns would be NULL

12



9/22/16

5

Outerjoin flavors and definitions

• A full outerjoin between R and S (denoted 𝑅⟗𝑆�� ) 
includes all rows in the result of 𝑅 ⋈ 𝑆, plus
• “Dangling” 𝑅 rows (those that do not join with any 𝑆

rows) padded with NULL’s for 𝑆’s columns
• “Dangling” 𝑆 rows (those that do not join with any 𝑅

rows) padded with NULL’s for 𝑅’s columns

• A left outerjoin (𝑅⟕𝑆�� ) includes rows in 𝑅 ⋈ 𝑆 plus 
dangling 𝑅 rows padded with NULL’s
• A right outerjoin (𝑅⟖𝑆�� ) includes rows in 𝑅 ⋈ 𝑆

plus dangling 𝑆 rows padded with NULL’s

13

Outerjoin examples
14

gid name

abc Book Club

gov Student Government

dps Dead Putting Society

nuk United Nuclear Workers

uid gid

142 dps

123 gov

857 abc

857 gov

789 foo

Group

Member

gid name uid

abc Book Club 857

gov Student Government 123

gov Student Government 857

dps Dead Putting Society 142

nuk United Nuclear Workers NULL

Group⟕ Member
�

�

gid name uid

abc Book Club 857

gov Student Government 123

gov Student Government 857

dps Dead Putting Society 142

foo NULL 789

Group⟖ Member
�

�

gid name uid

abc Book Club 857

gov Student Government 123

gov Student Government 857

dps Dead Putting Society 142

nuk United Nuclear Workers NULL

foo NULL 789

Group⟗ Member
�

�

Outerjoin syntax
• SELECT * FROM Group LEFT OUTER JOIN Member

ON Group.gid = Member.gid;
≈ 𝐺𝑟𝑜𝑢𝑝 ⟕ 𝑀𝑒𝑚𝑏𝑒𝑟

�

BCDEF.HIJKLMNOMC.HIJ

• SELECT * FROM Group RIGHT OUTER JOIN Member
ON Group.gid = Member.gid;

≈ 𝐺𝑟𝑜𝑢𝑝 ⟖ 𝑀𝑒𝑚𝑏𝑒𝑟
�

BCDEF.HIJKLMNOMC.HIJ

• SELECT * FROM Group FULL OUTER JOIN Member
ON Group.gid = Member.gid;

≈ 𝐺𝑟𝑜𝑢𝑝 ⟗ 𝑀𝑒𝑚𝑏𝑒𝑟
�

BCDEF.HIJKLMNOMC.HIJ

☞A similar construct exists for regular (“inner”) joins:
• SELECT * FROM Group JOIN Member 

ON Group.gid = Member.gid;

☞These are theta joins rather than natural joins
• Return all columns in Group and Member

☞For natural joins, add keyword NATURAL; don’t use ON

15



9/22/16

6

SQL features covered so far

• SELECT-FROM-WHERE statements
• Set and bag operations
• Table expressions, subqueries
• Aggregation and grouping
• Ordering
• NULL’s and outerjoins

FNext: data modification statements, constraints

16

INSERT

• Insert one row

• INSERT INTO Member VALUES (789, 'dps');
• User 789 joins Dead Putting Society

• Insert the result of a query
• INSERT INTO Member
(SELECT uid, 'dps' FROM User
WHERE uid NOT IN (SELECT uid

FROM Member
WHERE gid = 'dps'));

• Everybody joins Dead Putting Society!

17

DELETE
• Delete everything from a table
• DELETE FROM Member;

• Delete according to a WHERE condition
Example: User 789 leaves Dead Putting Society
• DELETE FROM Member
WHERE uid = 789 AND gid = 'dps';

Example: Users under age 18 must be removed 
from United Nuclear Workers
• DELETE FROM Member
WHERE uid IN (SELECT uid FROM User

WHERE age < 18)
AND gid = 'nuk';

18



9/22/16

7

UPDATE
• Example: User 142 changes name to “Barney”
• UPDATE User
SET name = 'Barney'
WHERE uid = 142;

• Example: We are all popular!
• UPDATE User
SET pop = (SELECT AVG(pop) FROM User);
• But won’t update of every row causes average pop to change?
FSubquery is always computed over the old table

19

Constraints

• Restrictions on allowable data in a database
• In addition to the simple structure and type restrictions 

imposed by the table definitions
• Declared as part of the schema
• Enforced by the DBMS

• Why use constraints?
• Protect data integrity (catch errors)
• Tell the DBMS about the data (so it can optimize better)

20

Types of SQL constraints

• NOT NULL
• Key
• Referential integrity (foreign key)
• General assertion
• Tuple- and attribute-based CHECK’s

21



9/22/16

8

NOT NULL constraint examples

• CREATE TABLE User
(uid INTEGER NOT NULL,
name VARCHAR(30) NOT NULL,
twitterid VARCHAR(15) NOT NULL,
age INTEGER,
pop FLOAT);

• CREATE TABLE Group
(gid CHAR(10) NOT NULL,
name VARCHAR(100) NOT NULL);

• CREATE TABLE Member
(uid INTEGER NOT NULL,
gid CHAR(10) NOT NULL);

22

Key declaration

• At most one PRIMARY KEY per table
• Typically implies a primary index
• Rows are stored inside the index, typically sorted by the 

primary key value ⇒ best speedup for queries
• Any number of UNIQUE keys per table
• Typically implies a secondary index
• Pointers to rows are stored inside the index ⇒ less 

speedup for queries

23

Key declaration examples
• CREATE TABLE User
(uid INTEGER NOT NULL PRIMARY KEY,
name VARCHAR(30) NOT NULL,
twitterid VARCHAR(15) NOT NULL UNIQUE,
age INTEGER,
pop FLOAT);

• CREATE TABLE Group
(gid CHAR(10) NOT NULL PRIMARY KEY,
name VARCHAR(100) NOT NULL);

• CREATE TABLE Member
(uid INTEGER NOT NULL,
gid CHAR(10) NOT NULL,
PRIMARY KEY(uid, gid));

24

This form is required for multi-attribute keys



9/22/16

9

Referential integrity example

• Member.uid references User.uid
• If an uid appears in Member, it must appear in User

• Member.gid references Group.gid
• If a gid appears in Member, it must appear in Group

FThat is, no “dangling pointers”

25

uid name …

142 Bart …

123 Milhouse …

857 Lisa …

456 Ralph …

789 Nelson …

… … …

gid name

abc …

gov …

dps …

… …

uid gid

142 dps

123 gov

857 abc

857 gov

456 abc

456 gov

… …

User GroupMember

Referential integrity in SQL

• Referenced column(s) must be PRIMARY KEY
• Referencing column(s) form a FOREIGN KEY
• Example
• CREATE TABLE Member
(uid INTEGER NOT NULL

REFERENCES User(uid),
gid CHAR(10) NOT NULL,
PRIMARY KEY(uid, gid),
FOREIGN KEY gid REFERENCES Group(gid));

26

Enforcing referential integrity 

Example: Member.uid references User.uid
• Insert or update a Member row so it refers to a non-

existent uid
• Reject

• Delete or update a User row whose uid is 
referenced by some Member row
• Reject
• Cascade: ripple changes to all referring rows
• Set NULL: set all references to NULL
• All three options can be specified in SQL

27



9/22/16

10

Deferred constraint checking
• No-chicken-no-egg problem

• CREATE TABLE Dept
(name CHAR(20) NOT NULL PRIMARY KEY,
chair CHAR(30) NOT NULL

REFERENCES Prof(name));
CREATE TABLE Prof
(name CHAR(30) NOT NULL PRIMARY KEY,
dept CHAR(20) NOT NULL 

REFERENCES Dept(name));

• Deferred constraint checking is necessary
• Check only at the end of a transaction
• Allowed in SQL as an option

• Curious how the schema was created in the first place?
• ALTER TABLE ADD CONSTRAINT (read the manual!)

28

General assertion

• CREATE ASSERTION 𝑎𝑠𝑠𝑒𝑟𝑡𝑖𝑜𝑛_𝑛𝑎𝑚𝑒
CHECK assertion_condition;
• assertion_condition is checked for each 

modification that could potentially violate it
• Example: Member.uid references User.uid
• CREATE ASSERTION MemberUserRefIntegrity
CHECK (NOT EXISTS

(SELECT * FROM Member
WHERE uid NOT IN
(SELECT uid FROM User)));

FIn SQL3, but not all (perhaps no) DBMS supports it

29

Tuple- and attribute-based CHECK’s
• Associated with a single table

• Only checked when a tuple/attribute is inserted/updated
• Reject if condition evaluates to FALSE
• TRUE and UNKNOWN are fine

• Examples:
• CREATE TABLE User(... 

age INTEGER CHECK(age IS NULL OR age > 0),
...);

• CREATE TABLE Member
(uid INTEGER NOT NULL,
CHECK(uid IN (SELECT uid FROM User)),
...);
• Is it a referential integrity constraint?

30



9/22/16

11

SQL features covered so far

• Query
• SELECT-FROM-WHERE statements
• Set and bag operations
• Table expressions, subqueries
• Aggregation and grouping
• Ordering
• Outerjoins

• Modification
• INSERT/DELETE/UPDATE

• Constraints
FNext: triggers, views, indexes

31


