
9/29/16

1

SQL:
Triggers, Views, Indexes

Introduction to Databases
CompSci 316 Fall 2016

Announcements (Thu., Sep. 29)

• Homework #2 due next Tuesday
• Midterm in class next Thursday
• Open-book, open-notes
• Same format as sample midterm (from last year),

already posted on Sakai

• Project Milestone #1 due Thursday, Oct. 13
• See project description on what to accomplish by then

2

“Active” data

• Constraint enforcement: When an operation
violates a constraint, abort the operation or try to
“fix” data
• Example: enforcing referential integrity constraints
• Generalize to arbitrary constraints?

• Data monitoring: When something happens to the
data, automatically execute some action
• Example: When price rises above $20 per share, sell
• Example: When enrollment is at the limit and more

students try to register, email the instructor

3

9/29/16

2

Triggers

• A trigger is an event-condition-action (ECA) rule
• When event occurs, test condition; if condition is

satisfied, execute action

• Example:
• Event: some user’s popularity is updated
• Condition: the user is a member of

“Jessica’s Circle,” and pop drops below 0.5
• Action: kick that user out of Jessica’s Circle

4

http://pt.simpsons.wikia.com/wiki/Arquivo:Jessica_lovejoy.jpg

Trigger example
CREATE TRIGGER PickyJessica
AFTER UPDATE OF pop ON User
REFERENCING NEW ROW AS newUser
FOR EACH ROW
WHEN (newUser.pop < 0.5)
AND (newUser.uid IN (SELECT uid

FROM Member
WHERE gid = 'jes'))

DELETE FROM Member
WHERE uid = newUser.uid AND gid = 'jes';

5

Event

Condition

Action

Trigger options

• Possible events include:
• INSERT ON table
• DELETE ON table
• UPDATE [OF column] ON table

• Granularity—trigger can be activated:
• FOR EACH ROWmodified
• FOR EACH STATEMENT that performs modification

• Timing—action can be executed:
• AFTER or BEFORE the triggering event
• INSTEAD OF the triggering event on views (more later)

6

9/29/16

3

Transition variables

• OLD ROW: the modified row before the triggering event
• NEW ROW: the modified row after the triggering event
• OLD TABLE: a hypothetical read-only table containing

all rows to be modified before the triggering event
• NEW TABLE: a hypothetical table containing all

modified rows after the triggering event
FNot all of them make sense all the time, e.g.

• AFTER INSERT statement-level triggers
• Can use only NEW TABLE

• BEFORE DELETE row-level triggers
• Can use only OLD ROW

• etc.

7

Statement-level trigger example

CREATE TRIGGER PickyJessica
AFTER UPDATE OF pop ON User
REFERENCING NEW TABLE AS newUsers
FOR EACH STATEMENT
DELETE FROM Member
WHERE gid = 'jes'
AND uid IN (SELECT uid

FROM newUsers
WHERE pop < 0.5);

8

BEFORE trigger example
• Never allow age to decrease
CREATE TRIGGER NoFountainOfYouth
BEFORE UPDATE OF age ON User
REFERENCING OLD ROW AS o,

NEW ROW AS n
FOR EACH ROW
WHEN (n.age < o.age)
SET n.age = o.age;
FBEFORE triggers are often used to

“condition” data
FAnother option is to raise an error in the trigger

body to abort the transaction that caused the
trigger to fire

9

9/29/16

4

Statement- vs. row-level triggers

Why are both needed?
• Certain triggers are only possible at statement level
•

• Simple row-level triggers are easier to implement
• Statement-level triggers require significant amount of

state to be maintained in OLD TABLE and NEW TABLE
• However, a row-level trigger gets fired for each row, so

complex row-level triggers may be less efficient for
statements that modify many rows

10

System issues
• Recursive firing of triggers

• Action of one trigger causes another trigger to fire
• Can get into an infinite loop

• Some DBMS leave it to programmers/database administrators
(e.g., PostgreSQL)

• Some restrict trigger actions (e.g., Oracle)
• Many set a maximum level of recursion (e.g., 16 in DB2)

• Interaction with constraints (tricky to get right!)
• When do we check if a triggering event violates constraints?

• After a BEFORE trigger (so the trigger can fix a potential violation)
• Before an AFTER trigger

• AFTER triggers also see the effects of, say, cascaded deletes
caused by referential integrity constraint violations

(Based on DB2; other DBMS may differ)

11

Views

• A view is like a “virtual” table
• Defined by a query, which describes how to compute

the view contents on the fly
• DBMS stores the view definition query instead of view

contents
• Can be used in queries just like a regular table

12

9/29/16

5

Creating and dropping views

• Example: members of Jessica’s Circle
• CREATE VIEW JessicaCircle AS
SELECT * FROM User
WHERE uid IN (SELECT uid FROM Member

WHERE gid = 'jes');
• Tables used in defining a view are called “base tables”

• User and Member above

• To drop a view
• DROP VIEW JessicaCircle;

13

Using views in queries

• Example: find the average popularity of members in
Jessica’s Circle
• SELECT AVG(pop) FROM JessicaCircle;
• To process the query, replace the reference to the view

by its definition
• SELECT AVG(pop)
FROM (SELECT * FROM User

WHERE uid IN
(SELECT uid FROM Member
WHERE gid = 'jes'))

AS JessicaCircle;

14

Why use views?

• To hide data from users
• To hide complexity from users
• Logical data independence
• If applications deal with views, we can change the

underlying schema without affecting applications
• Recall physical data independence: change the physical

organization of data without affecting applications

• To provide a uniform interface for different
implementations or sources

FReal database applications use tons of views

15

9/29/16

6

Modifying views

• Does it even make sense, since views are virtual?
• It does make sense if we want users to really see

views as tables
• Goal: modify the base tables such that the

modification would appear to have been
accomplished on the view

16

A simple case

CREATE VIEW UserPop AS
SELECT uid, pop FROM User;

DELETE FROM UserPop WHERE uid = 123;

translates to:

DELETE FROM User WHERE uid = 123;

17

An impossible case

CREATE VIEW PopularUser AS
SELECT uid, pop FROM User
WHERE pop >= 0.8;

INSERT INTO PopularUser
VALUES(987, 0.3);
• No matter what we do on User, the inserted row

will not be in PopularUser

18

9/29/16

7

A case with too many possibilities

CREATE VIEW AveragePop(pop) AS
SELECT AVG(pop) FROM User;
• Note that you can rename columns in view definition

UPDATE AveragePop SET pop = 0.5;
• Set everybody’s pop to 0.5?
• Adjust everybody’s pop by the same amount?
• Just lower Jessica’s pop?

19

SQL92 updateable views

• More or less just single-table selection queries
• No join
• No aggregation
• No subqueries

• Arguably somewhat restrictive
• Still might get it wrong in some cases
• See the slide titled “An impossible case”
• Adding WITH CHECK OPTION to the end of the view

definition will make DBMS reject such modifications

20

INSTEAD OF triggers for views

CREATE TRIGGER AdjustAveragePop
INSTEAD OF UPDATE ON AveragePop
REFERENCING OLD ROW AS o,

NEW ROW AS n
FOR EACH ROW
UPDATE User
SET pop = pop + (n.pop-o.pop);
• What does this trigger do?

21

9/29/16

8

Indexes
• An index is an auxiliary persistent data structure

• Search tree (e.g., B+-tree), lookup table (e.g., hash table), etc.

FMore on indexes later in this course!
• An index on 𝑅. 𝐴 can speed up accesses of the form

• 𝑅. 𝐴	 = 	𝑣𝑎𝑙𝑢𝑒
• 𝑅. 𝐴	 > 	𝑣𝑎𝑙𝑢𝑒 (sometimes; depending on the index type)

• An index on 𝑅. 𝐴,, … , 𝑅. 𝐴/ can speed up
• 𝑅. 𝐴, = 𝑣𝑎𝑙𝑢𝑒, ∧ ⋯∧ 𝑅. 𝐴/ = 𝑣𝑎𝑙𝑢𝑒/
• 𝑅. 𝐴,, … , 𝑅. 𝐴/ > 𝑣𝑎𝑙𝑢𝑒,, … , 𝑣𝑎𝑙𝑢𝑒/ (again depends)

FOrdering or index columns is important—is an index
on 𝑅. 𝐴, 𝑅. 𝐵 equivalent to one on 𝑅. 𝐵, 𝑅. 𝐴 ?

FHow about an index on 𝑅. 𝐴 plus another on 𝑅. 𝐵?

22

Examples of using indexes
• SELECT * FROM User WHERE name = 'Bart';
• Without an index on User.name: must scan the entire

table if we store User as a flat file of unordered rows
• With index: go “directly” to rows with name='Bart'

• SELECT * FROM User, Member
WHERE User.uid = Member.uid
AND Member.gid = 'jes';
• With an index on Member.gid or (gid, uid): find relevant

Member rows directly
• With an index on User.uid: for each relevant Member

row, directly look up User rows with matching uid
• Without it: for each Member row, scan the entire User table for

matching uid
• Sorting could help

23

Creating and dropping indexes in SQL

CREATE [UNIQUE] INDEX 𝑖𝑛𝑑𝑒𝑥𝑛𝑎𝑚𝑒 ON
𝑡𝑎𝑏𝑙𝑒𝑛𝑎𝑚𝑒(𝑐𝑜𝑙𝑢𝑚𝑛𝑛𝑎𝑚𝑒,,…,𝑐𝑜𝑙𝑢𝑚𝑛𝑛𝑎𝑚𝑒/);
• With UNIQUE, the DBMS will also enforce that
𝑐𝑜𝑙𝑢𝑚𝑛𝑛𝑎𝑚𝑒,,… , 𝑐𝑜𝑙𝑢𝑚𝑛𝑛𝑎𝑚𝑒/ is a key of
𝑡𝑎𝑏𝑙𝑒𝑛𝑎𝑚𝑒

DROP INDEX 𝑖𝑛𝑑𝑒𝑥𝑛𝑎𝑚𝑒;

• Typically, the DBMS will automatically create
indexes for PRIMARY KEY and UNIQUE constraint
declarations

24

9/29/16

9

Choosing indexes to create

More indexes = better performance?
•
•

•

FOptimal index selection depends on both query
and update workload and the size of tables
• Automatic index selection is now featured in some

commercial DBMS

25

SQL features covered so far

• Query
• Modification
• Constraints
• Triggers
• Views
• Indexes

26

