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SQL: 
Triggers, Views, Indexes

Introduction to Databases
CompSci 316 Fall 2016

Announcements (Thu., Sep. 29)

• Homework #2 due next Tuesday
• Midterm in class next Thursday
• Open-book, open-notes
• Same format as sample midterm (from last year), 

already posted on Sakai

• Project Milestone #1 due Thursday, Oct. 13
• See project description on what to accomplish by then
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“Active” data

• Constraint enforcement: When an operation 
violates a constraint, abort the operation or try to 
“fix” data
• Example: enforcing referential integrity constraints
• Generalize to arbitrary constraints?

• Data monitoring: When something happens to the 
data, automatically execute some action
• Example: When price rises above $20 per share, sell
• Example: When enrollment is at the limit and more 

students try to register, email the instructor
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Triggers

• A trigger is an event-condition-action (ECA) rule
• When event occurs, test condition; if condition is 

satisfied, execute action

• Example:
• Event: some user’s popularity is updated
• Condition: the user is a member of 

“Jessica’s Circle,” and pop drops below 0.5
• Action: kick that user out of Jessica’s Circle
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http://pt.simpsons.wikia.com/wiki/Arquivo:Jessica_lovejoy.jpg

Trigger example
CREATE TRIGGER PickyJessica
AFTER UPDATE OF pop ON User
REFERENCING NEW ROW AS newUser
FOR EACH ROW
WHEN (newUser.pop < 0.5)
AND (newUser.uid IN (SELECT uid

FROM Member
WHERE gid = 'jes')) 

DELETE FROM Member
WHERE uid = newUser.uid AND gid = 'jes';
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Event

Condition

Action

Trigger options

• Possible events include:
• INSERT ON table
• DELETE ON table
• UPDATE [OF column] ON table

• Granularity—trigger can be activated:
• FOR EACH ROWmodified
• FOR EACH STATEMENT that performs modification

• Timing—action can be executed:
• AFTER or BEFORE the triggering event
• INSTEAD OF the triggering event on views (more later)
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Transition variables

• OLD ROW: the modified row before the triggering event
• NEW ROW: the modified row after the triggering event
• OLD TABLE: a hypothetical read-only table containing 

all rows to be modified before the triggering event
• NEW TABLE: a hypothetical table containing all 

modified rows after the triggering event
FNot all of them make sense all the time, e.g.

• AFTER INSERT statement-level triggers
• Can use only NEW TABLE

• BEFORE DELETE row-level triggers
• Can use only OLD ROW

• etc.
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Statement-level trigger example

CREATE TRIGGER PickyJessica
AFTER UPDATE OF pop ON User
REFERENCING NEW TABLE AS newUsers
FOR EACH STATEMENT
DELETE FROM Member
WHERE gid = 'jes'
AND uid IN (SELECT uid

FROM newUsers
WHERE pop < 0.5);
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BEFORE trigger example
• Never allow age to decrease
CREATE TRIGGER NoFountainOfYouth
BEFORE UPDATE OF age ON User
REFERENCING OLD ROW AS o, 

NEW ROW AS n
FOR EACH ROW
WHEN (n.age < o.age)
SET n.age = o.age;
FBEFORE triggers are often used to 

“condition” data
FAnother option is to raise an error in the trigger 

body to abort the transaction that caused the 
trigger to fire

9



9/29/16

4

Statement- vs. row-level triggers

Why are both needed?
• Certain triggers are only possible at statement level
•

• Simple row-level triggers are easier to implement
• Statement-level triggers require significant amount of 

state to be maintained in OLD TABLE and NEW TABLE
• However, a row-level trigger gets fired for each row, so 

complex row-level triggers may be less efficient for 
statements that modify many rows
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System issues
• Recursive firing of triggers

• Action of one trigger causes another trigger to fire
• Can get into an infinite loop

• Some DBMS leave it to programmers/database administrators 
(e.g., PostgreSQL)

• Some restrict trigger actions (e.g., Oracle)
• Many set a maximum level of recursion (e.g., 16 in DB2)

• Interaction with constraints (tricky to get right!)
• When do we check if a triggering event violates constraints?

• After a BEFORE trigger (so the trigger can fix a potential violation)
• Before an AFTER trigger

• AFTER triggers also see the effects of, say, cascaded deletes 
caused by referential integrity constraint violations

(Based on DB2; other DBMS may differ)
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Views

• A view is like a “virtual” table
• Defined by a query, which describes how to compute 

the view contents on the fly
• DBMS stores the view definition query instead of view 

contents
• Can be used in queries just like a regular table
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Creating and dropping views

• Example: members of Jessica’s Circle
• CREATE VIEW JessicaCircle AS
SELECT * FROM User
WHERE uid IN (SELECT uid FROM Member

WHERE gid = 'jes');
• Tables used in defining a view are called “base tables”

• User and Member above

• To drop a view
• DROP VIEW JessicaCircle;
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Using views in queries

• Example: find the average popularity of members in 
Jessica’s Circle
• SELECT AVG(pop) FROM JessicaCircle;
• To process the query, replace the reference to the view 

by its definition
• SELECT AVG(pop)
FROM (SELECT * FROM User

WHERE uid IN
(SELECT uid FROM Member
WHERE gid = 'jes'))

AS JessicaCircle;
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Why use views?

• To hide data from users
• To hide complexity from users
• Logical data independence
• If applications deal with views, we can change the 

underlying schema without affecting applications
• Recall physical data independence: change the physical 

organization of data without affecting applications

• To provide a uniform interface for different 
implementations or sources

FReal database applications use tons of views
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Modifying views

• Does it even make sense, since views are virtual?
• It does make sense if we want users to really see 

views as tables
• Goal: modify the base tables such that the 

modification would appear to have been 
accomplished on the view
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A simple case

CREATE VIEW UserPop AS
SELECT uid, pop FROM User;

DELETE FROM UserPop WHERE uid = 123;

translates to:

DELETE FROM User WHERE uid = 123;
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An impossible case

CREATE VIEW PopularUser AS
SELECT uid, pop FROM User
WHERE pop >= 0.8;

INSERT INTO PopularUser
VALUES(987, 0.3);
• No matter what we do on User, the inserted row 

will not be in PopularUser
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A case with too many possibilities

CREATE VIEW AveragePop(pop) AS
SELECT AVG(pop) FROM User;
• Note that you can rename columns in view definition

UPDATE AveragePop SET pop = 0.5;
• Set everybody’s pop to 0.5?
• Adjust everybody’s pop by the same amount?
• Just lower Jessica’s pop?
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SQL92 updateable views

• More or less just single-table selection queries
• No join
• No aggregation
• No subqueries

• Arguably somewhat restrictive
• Still might get it wrong in some cases
• See the slide titled “An impossible case”
• Adding WITH CHECK OPTION to the end of the view 

definition will make DBMS reject such modifications
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INSTEAD OF triggers for views

CREATE TRIGGER AdjustAveragePop
INSTEAD OF UPDATE ON AveragePop
REFERENCING OLD ROW AS o,

NEW ROW AS n
FOR EACH ROW
UPDATE User
SET pop = pop + (n.pop-o.pop);
• What does this trigger do?
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Indexes
• An index is an auxiliary persistent data structure

• Search tree (e.g., B+-tree), lookup table (e.g., hash table), etc.

FMore on indexes later in this course!
• An index on 𝑅. 𝐴 can speed up accesses of the form

• 𝑅. 𝐴	 = 	𝑣𝑎𝑙𝑢𝑒
• 𝑅. 𝐴	 > 	𝑣𝑎𝑙𝑢𝑒 (sometimes; depending on the index type)

• An index on 𝑅. 𝐴,, … , 𝑅. 𝐴/ can speed up
• 𝑅. 𝐴, = 𝑣𝑎𝑙𝑢𝑒, ∧ ⋯∧ 𝑅. 𝐴/ = 𝑣𝑎𝑙𝑢𝑒/
• 𝑅. 𝐴,, … , 𝑅. 𝐴/ > 𝑣𝑎𝑙𝑢𝑒,, … , 𝑣𝑎𝑙𝑢𝑒/ (again depends)

FOrdering or index columns is important—is an index 
on 𝑅. 𝐴, 𝑅. 𝐵 equivalent to one on 𝑅. 𝐵, 𝑅. 𝐴 ?

FHow about an index on 𝑅. 𝐴 plus another on 𝑅. 𝐵?
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Examples of using indexes
• SELECT * FROM User WHERE name = 'Bart';
• Without an index on User.name: must scan the entire 

table if we store User as a flat file of unordered rows
• With index: go “directly” to rows with name='Bart'

• SELECT * FROM User, Member
WHERE User.uid = Member.uid
AND Member.gid = 'jes';
• With an index on Member.gid or (gid, uid): find relevant 

Member rows directly
• With an index on User.uid: for each relevant Member

row, directly look up User rows with matching uid
• Without it: for each Member row, scan the entire User table for 

matching uid
• Sorting could help
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Creating and dropping indexes in SQL

CREATE [UNIQUE] INDEX 𝑖𝑛𝑑𝑒𝑥𝑛𝑎𝑚𝑒 ON 
𝑡𝑎𝑏𝑙𝑒𝑛𝑎𝑚𝑒(𝑐𝑜𝑙𝑢𝑚𝑛𝑛𝑎𝑚𝑒,,…,𝑐𝑜𝑙𝑢𝑚𝑛𝑛𝑎𝑚𝑒/);
• With UNIQUE, the DBMS will also enforce that 
𝑐𝑜𝑙𝑢𝑚𝑛𝑛𝑎𝑚𝑒,,… , 𝑐𝑜𝑙𝑢𝑚𝑛𝑛𝑎𝑚𝑒/ is a key of 
𝑡𝑎𝑏𝑙𝑒𝑛𝑎𝑚𝑒

DROP INDEX 𝑖𝑛𝑑𝑒𝑥𝑛𝑎𝑚𝑒;

• Typically, the DBMS will automatically create 
indexes for PRIMARY KEY and UNIQUE constraint 
declarations
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Choosing indexes to create

More indexes = better performance?
•
•

•

FOptimal index selection depends on both query 
and update workload and the size of tables
• Automatic index selection is now featured in some 

commercial DBMS
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SQL features covered so far

• Query
• Modification
• Constraints
• Triggers
• Views
• Indexes
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