SQL: Recursion

Introduction to Databases
CompSci 316 Fall 2016

DUKE
COMPUTER SCIENCE \qquad

Announcements (Tue., Sep. 29)

- Homework \#2 due tonight
- Deadline extended to Thursday for Problem 6 (Gradiance) and Problem X2 (non-Gradiance)
\qquad
\qquad
\qquad
- Midterm in class Thursday
- Open-book, open-notes
- Same format as sample midterm (from last year) - Sample solution also posted in Sakai
- Project Milestone \#1 due next Thursday
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

A motivating example

Parent (parent, child)

parent	child
Homer	Bart
Homer	Lisa
Marge	Bart
Marge	Lisa
Abe	Homer
Ape	Abe

- Example: find Bart's ancestors
- "Ancestor" has a recursive definition
- X is Y 's ancestor if
- X is Y 's parent, or
- X is Z 's ancestor and Z is Y 's ancestor

Recursion in SQL

- SQL2 had no recursion
- You can find Bart's parents, grandparents, great grandparents, etc.

SELECT pl.parent AS grandparent
FROM Parent pl, Parent p2
WHERE pl.child = p2.parent
AND p2.child = 'Bart';

- But you cannot find all his ancestors with a single query
- SQL3 introduces recursion
- WITH clause
- Implemented in PostgreSQL (common table expressions) \qquad
\qquad

Ancestor query in SQL3

Fixed point of a function

\qquad

- If $f: T \rightarrow T$ is a function from a type T to itself, a fixed point of f is a value x such that $f(x)=x$
- Example: What is the fixed point of $f(x)=x / 2$? - 0 , because $f(0)=0 / 2=0$
- To compute a fixed point of f
- Start with a "seed": $x \leftarrow x_{0}$
- Compute $f(x)$
- If $f(x)=x$, stop; x is fixed point of f
- Otherwise, $x \leftarrow f(x)$; repeat
- Example: compute the fixed point of $f(x)=x / 2$
- With seed $1: 1,1 / 2,1 / 4,1 / 8,1 / 16, \ldots \rightarrow 0$
- Doesn't always work, but happens to work for us!
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Fixed point of a query

- A query q is just a function that maps an input table to an output table, so a fixed point of q is a table T such that $q(T)=T$
- To compute fixed point of q
- Start with an empty table: $T \leftarrow \varnothing$
- Evaluate q over T
- If the result is identical to T, stop; T is a fixed point
- Otherwise, let T be the new result; repeat

Starting from \emptyset produces the unique minimal fixed
point (assuming q is monotone)

Finding ancestors

Intuition behind fixed-point iteration

- Initially, we know nothing about ancestordescendent relationships
- In the first step, we deduce that parents and children form ancestor-descendent relationships
- In each subsequent steps, we use the facts deduced in previous steps to get more ancestordescendent relationships
- We stop when no new facts can be proven

Linear recursion

- With linear recursion, a recursive definition can make only one reference to itself
- Non-linear
- WITH RECURSIVE Ancestor (anc, desc) AS
((SELECT parent, child FROM Parent)
UNION
(SELECT al.anc, a2.desc
FROM Ancestor al, Ancestor a2
WHERE al.desc = a2.anc))
- Linear
- WITH RECURSIVE Ancestor(anc, desc) AS
((SELECT parent, child FROM Parent)
UNION
(SELECT anc, child
FROM Ancestor, Parent
WHERE desc = parent))

Linear vs. non-linear recursion

- Linear recursion is easier to implement
- For linear recursion, just keep joining newly generated Ancestor rows with Parent
- For non-linear recursion, need to join newly generated Ancestor rows with all existing Ancestor rows
- Non-linear recursion may take fewer steps to converge, but perform more work
- Example: $a \rightarrow b \rightarrow c \rightarrow d \rightarrow e$
- Linear recursion takes 4 steps
- Non-linear recursion takes 3 steps
- More work: e.g., $a \rightarrow d$ has two different derivations
\qquad
五
\square
\qquad

Mutual recursion example

\qquad

- Table Natural (n) contains $1,2, \ldots, 100$ \qquad
- Which numbers are even/odd?
- An odd number plus 1 is an even number \qquad
- An even number plus 1 is an odd number
- 1 is an odd number \qquad
WITH RECURSIVE Even(n) AS
(SELECT n FROM Natural
WHERE $\mathrm{n}=\operatorname{ANY}($ SELECT $\mathrm{n}+1$ FROM Odd)), \qquad
RECURSIVE Odd(n) AS
((SELECT n FROM Natural WHERE $\mathrm{n}=1$)
UNION
(SELECT n FROM Natural
WHERE $\mathrm{n}=$ ANY (SELECT $\mathrm{n}+1$ FROM Even)))

Semantics of WITH

```
- WITH RECURSIVE \(R_{1}\) AS \(Q_{1}, \ldots\),
    RECURSIVE \(R_{n}\) AS \(Q_{n}\)
Q;
    - \(Q\) and \(Q_{1}, \ldots, Q_{n}\) may refer to \(R_{1}, \ldots, R_{n}\)
- Semantics
    1. \(R_{1} \leftarrow \emptyset, \ldots, R_{n} \leftarrow \emptyset\)
    2. Evaluate \(Q_{1}, \ldots, Q_{n}\) using the current contents of \(R_{1}, \ldots, R_{n}\) :
        \(R_{1}^{\text {new }} \leftarrow Q_{1}, \ldots, R_{n}^{\text {new }} \leftarrow Q_{n}\)
    3. If \(R_{i}^{\text {new }} \neq R_{i}\) for some \(i\)
        3.1. \(R_{1} \leftarrow R_{1}^{\text {new }}, \ldots, R_{n} \leftarrow R_{n}^{\text {new }}\)
        3.2. Go to 2.
    4. Compute \(Q\) using the current contents of \(R_{1}, \ldots R_{n}\)
        and output the result
```

\qquad

Computing mutual recursion

WITH RECURSIVE Even(n) AS
SELECT n FROM Natural
WHERE $\mathrm{n}=$ ANY(SELECT $\mathrm{n}+1$ FROM Odd)),
RECURSIVE Odd(n) AS
(SELECT n FROM Natural WHERE $\mathrm{n}=1$)
(SELECT n FROM Natural
WHERE $\mathrm{n}=\operatorname{ANY}($ SELECT $\mathrm{n}+1$ FROM Even)))

- Even = \varnothing, Odd = \varnothing
- Even $=\varnothing$, Odd = $\{1\}$
- Even $=\{2\}$, Odd $=\{1\}$
- Even $=\{2\}$, Odd $=\{1,3\}$
- Even $=\{2,4\}$, Odd $=\{1,3\}$
- Even $=\{2,4\}$, Odd $=\{1,3,5\}$
-...

Fixed points are not unique

WITH RECURSIVE
Ancestor (anc, desc) AS
((SELECT parent, child FROM
Parent)
UNION
(SELECT al.anc, a2.desc
FROM Ancest Abe Homer WHERE al.desc = a2.anc))

Note how the bogus tuple	Ape	Lisa

- But if q is monotone, then all these fixed points must contain the fixed point we computed from fixed-point iteration starting with \varnothing
- Thus the unique minimal fixed point is the "natural" answer

Mixing negation with recursion

\qquad

- If q is non-monotone
- The fixed-point iteration may flip-flop and never converge
- There could be multiple minimal fixed points-we wouldn't know which one to pick as answer!
- Example: popular users (pop ≥ 0.8) join either Jessica's Circle or Tommy's
- Those not in Jessica's Circle should be in Tom's
- Those not in Tom's Circle should be in Jessica's
- WITH RECURSIVE TommyCircle(uid) AS
(SELECT uid FROM User WHERE pop >= 0.8
AND uid NOT IN (SELECT uid FROM JessicaCircle)), RECURSIVE JessicaCircle(uid) AS
(SELECT uid FROM User WHERE pop >= 0.8
AND uid NOT IN (SELECT uid FROM TommyCircle))

Fixed-point iter may not converge

```
    WITH RECURSIVE TommyCircle(uid) AS
    (SELECT uid FROM User WHERE pop >= 0.8
    (SELECT uid FROM User WHERE pop >= 0.8
    AND uid NOT IN (SELECT uid FROM
    R RECURSIVE Jessicacircle(uid) AS 
    AND uid NOT IN (SELECT uid FROM TommyCircle))
```



```
    TommyCircle JessicaCircle
```

 TommyCircle JessicaCircle
 uid uid
 uid uid
 TommyCircle JessicaCircle
 TommyCircle JessicaCircle
 - \(\frac{14}{142}\)
    ```
        - \(\frac{14}{142}\)
```


Multiple minimal fixed points

WITH RECURSIVE TommyCircle(uid) AS
SELECT uid FROM User WHERE pop >= 0.8
AND uid NOT IN (SELECT uid FROM JessicaCircle)),
RECURSIVE JessicaCircle(uid) AS
(SELECT uid FROM User WHERE pop >= 0.8
AND uid NOT IN (SELECT uid FROM TommyCircle))

| uid | name | age | pop |
| :--- | :--- | :--- | :--- |
| 142 | Bart | 10 | 0.9 |
| 121 | Allison | 8 | 0.85 |

TommyCircle JessicaCircle \qquad

Legal mix of negation and recursion

- Construct a dependency graph
- One node for each table defined in WITH
- A directed edge $R \rightarrow S$ if R is defined in terms of S
- Label the directed edge "-" if the query defining R is not monotone with respect to S
- Legal SQL3 recursion: no cycle with a "-" edge
- Called stratified negation
- Bad mix: a cycle with at least one edge labeled "-"

\qquad
\qquad五
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Stratified negation example

- Find pairs of persons with no common ancestors

WITH RECURSIVE Ancestor(anc, desc) AS
((SELECT parent, child FROM Parent) UNION
(SELECT al.anc, a2.desc
FROM Ancestor
WHERE al. Ancestor
$=$
a2
Person(person) AS (SELECT child FROM Parent)),
NoCommonAnc(person1, person2) AS
(SELECT pl.person, p2.person
FROM Person pl, Person p2
FROM Person pl, Person p2
WHERE pl.person $<>$ p2.person)
(SELECT al.desc, a2.desc
NoCommonAnc
FROM a1, Ancestor a2

SELECT * FROM NoCommonAnc;

Evaluating stratified negation

- The stratum of a node R is the maximum number of "-" edges on any path from R in the dependency graph
- Ancestor: stratum o
- Person: stratum o

Person

- NoCommonAnc: stratum 1

NoCommonAnc

- Evaluation strategy
- Compute tables lowest-stratum first
- For each stratum, use fixed-point iteration on all nodes in that stratum
- Stratum 0: Ancestor and Person
- Stratum 1: NoCommonAnc

Intuitively, there is no negation within each stratum

Summary

- SQL3 WITH recursive queries
- Solution to a recursive query (with no negation): unique minimal fixed point
- Computing unique minimal fixed point: fixed-point iteration starting from \varnothing
- Mixing negation and recursion is tricky
- Illegal mix: fixed-point iteration may not converge; there may be multiple minimal fixed points
- Legal mix: stratified negation (compute by fixed-point iteration stratum by stratum)

