SQL: Programming
Introduction to Databases
CompSci 316 Fall 2016

E. DUKE
COMPUTER SCIENCE

10/13/16

Announcements (Thu., Oct. 13)

due tonight
* Only one member per team needs to submit
* Remember members. txt
is being graded
* Sample solution to be posted by tonight

Motivation

* Pros and cons of SQL
* Very high-level, possible to optimize
* Not intended for general-purpose computation

* Solutions
* Augment SQL with constructs from general-purpose
programming languages
* E.g.:SQL/PSM
* Use SQL together with general-purpose programming
languages
* E.g.: Python DB API, JDBC, embedded SQL
* Extend general-purpose programming languages with
SQL-like constructs
« E.g.: LINQ (Language Integrated Query for .NET)

An “impedance mismatch”

* SQL operates on

* Typical low-level general-purpose programming
languages operate on

& Solution:
(aresult table): position the cursor before the first
row
: move the cursor to the next row and return
that row; raise a flag if there is no such row
: clean up and release DBMS resources
@ Found in virtually every database language/API
« With slightly different syntaxes
@ Some support more positioning and movement options,
modification at the current position, etc.

10/13/16

Augmenting SQL: SQL/PSM

= Persistent Stored Modules

proc_name (param_decls
local_decls
proc_body
func_name (param_decls
return_type
local_decls
func_body
proc_name (params

* Inside procedure body:
variable func_name (params

SQL/PSM example

CREATE FUNCTION SetMaxPop(IN newMaxPop FLOAT)
RETURNS INT
- - Enforce newMaxPop; return # rows modified.

BEGIN
DECLARE rowsUpdated INT DEFAULT 0;
DECLARE thisPop FLOAT;

-- A cursor to range over all users:
DECLARE userCursor CURSOR FOR
SELECT pop FROM User

FOR UPDATE;

- - Set a flag upon “not found” exception:

DECLARE noMoreRows INT DEFAULT 0;

DECLARE CONTINUE HANDLER FOR NOT FOUND
SET noMoreRows = 1;

RETURN rowsUpdated;
END

SQL/PSM example continued

- - Fetch the first result row:
OPEN userCursor;
FETCH FROM userCursor INTO thisPop;
-- Loop over all result rows:
WHILE noMoreRows <> 1 DO
IF thisPop > newMaxPop THEN
-- Enforce newMaxPop:
UPDATE User SET pop = newMaxPop
WHERE CURRENT OF userCursor;
-- Update count:

SET rowsUpdated = rowsUpdated + 1;

END IF;

- - Fetch the next result row:

FETCH FROM userCursor INTO thisPop;
END WHILE;

CLOSE userCursor;

10/13/16

Other SQL/PSM features

* Assignment using scalar query results
* SELECT INTO
* Other loop constructs
* FOR, REPEAT UNTIL, LOOP
* Flow control
* GOTO
* Exceptions
* SIGNAL, RESTGNAL

* For more PostgreSQL-specific information, look for
“PL/pgSQL” in PostgreSQL documentation

* Link available from course website (under

Interfacing SQL with another language

approach
* SQL commands are sent to the DBMS at runtime
* Examples: Python DB API, JDBC, ODBC (C/C+*/VB)

* These API’s are all based on the SQL/CLI (Call-Level
Interface) standard

approach
* SQL commands are embedded in application code
A checks these commands at compile-time

and converts them into DBMS-specific API calls
* Examples: embedded SQL for C/C++, SQUI (for Java)

Example API: Python psycopg?2

import psycopg2
conn = psycopg2.connect(dbname='beers')
cur = conn.cursor()

ist all drinkers:
cur.execute('SELECT * FROM Drinkexr*y
for drinker, address in cur:

print drinker + ' lives at ' + address

print menu for bars whose name contains “a”:
cur.execute('SELECT * FROM Serves WHERE bar LIKE %s', ('%a%',))
for bar, beer, price in cur:

print bar + ' serves ' + beer)
+ ' at ${:,.2f}'.format(price)

cur.close()

conn.close()

10/13/16

More psycopg?2 examples

“commit” each change immediately—need to
conn.set_session(autocommit=True)

set this option just once at the start of the session

bar = raw_input('Enter the bar to update: ').strip()
beer = raw_input('Enter the beer to update: ').strip()
price = float(raw_input('Enter the new price: '))

try:

cur.execute(''"'
UPDATE Serves

SET price = %s
WHERE bar ='%s AND beer = %s''', (price, bar, beer))

if cur.rowcounti= 1:

print '{} row(s) updated: correct bar/beer?'\
.format (cur.rowcount,).

except Exception as e:

print e

Prepared statements: motivation

while True:
Input bar, beer, price..
cur.execute('''
UPDATE Serves

SET price = 7s
WHERE bar %s AND beer = 7s''', (price, bar, beer))

Check result...

* Every time we send an SQL string to the DBMS, it
must perform parsing, semantic analysis,
optimization, compilation, and finally execution

* A typical application issues many queries with a
small number of patterns (with different parameter
values)

* Can we reduce this overhead?

Prepared statements: example

See Jopt/dbcourse/examples/psycopg2/
(00 on your VM for a complete code example
cur.execute L

PREPARE ugdate price AS
UPDATE ‘Serves —

SET price = $1
WHERE bar = $2 AND beer = §3''')

while True:

. "EXECUTE. i N y Y, Execut
ur - execute (EXROTE, SpIsEEpTfec iy for 207 ‘

ote the h back to s for parameter placeholders

* The DBMS performs parsing, semantic analysis,
optimizatign, and compilation only once, when it
“prepares” the statement

* At execution time, the DBMS only needs to check
parameter types and validate the compiled plan

* Most other API’s have better support for prepared
statements than psycopg?2
* E.g., they would provide a cur.prepare () method

10/13/16

“Exploits of a mom”

Hi, THIS 1S OH, DEAR - DID HE | DID YOU REALLY WELL WEVE LOST THIS
YOUR SON SCHOOL. | BREAK SOMETHING? | NAME YOUR SON YEAR'S STUDENT RECORDS.
VERE HAVING SOME |\ ay, Robert'); DROP T HOPE YOURE HAPPY.
(QMPUTER TROUBLE. N TABLE Students; - 7
N AND I HOPE
s s ~ OH.YES, UTTE < YOUVE LEARNED
T BOBBY TABLES, + O SANMIZE YOUR
WE CALL HIM. DATABASE INPUTS.
tep://xked.com/327

* The school probably had something like:

name

where name is a string input by user
* Called an

Guarding against SQL injection

* Escape certain characters in a user input string, to
ensure that it remains a single string
* E.g., ', which would terminate a string in SQL, must be
replaced by ' ' (two single quotes in a row) within the
input string
* Luckily, most API’s provide ways to “sanitize” input
automatically (if you use them properly)
* E.g., pass parameter values in psycopg?2 through 7s’s

If one fails to learn the lesson...

ASHLEY
MADIS=N*

Life is short. Have an affair.®

... P.S. To Ashley Madison’s Development Team:
You should be embarrased [sic] for your train
wreck of a database (and obviously security), not
sanitizing your phone numbers to your database
is completely amateur, it’s as if the entire site was
made by Comp Sci 1XX students.

— Creators of CheckAshleyMadison. com

http: | /v washingtonpost . con/news the-intersect [up/ 2015/08/ 19/ how-to-see-if-

pouse-appear-in-the-ashley-padison-leak/

10/13/16

Augmenting SQL vs. API

* Pros of augmenting SQL:
* More processing features for DBMS
* More application logic can be pushed
closer to data

* Less data “shipping,” more optimization
opportunities = more efficient

* Less code = easier to maintain multiple
applications
* Cons of augmenting SQL:

* SQLis already too big—at some
point one must recognize that
SQL/DBMS are not for everything!

* General-purpose programming
constructs complicate optimization
and make it impossible to guarantee
safety

A brief look at other approaches

* “Embed” SQL in general-purpose programming
languages
* E.g.: embedded SQL

* Extend general-purpose programming languages
with SQL-like constructs
* E.g.: LINQ(Language Integrated Query for .NET)

Embedded SQL

* Embed SQL inside code written in a general-
purpose language

* Special keywords mark code sections containing SQL or
variables holding data to be passed to/from SQL

* A “pre-compiler” parses the program and
automatically convert the special sections to code
with appropriate API calls

* Pros: more compile-time checking, and potentially more
optimization opportunities
* Cons: DBMS-specific:
« Different pre-compilers for different DBMS vendors
* Program executable not portable across DBMS’s
« Difficult for a program to talk to DBMS’s from different vendors

10/13/16

Embedded SQL example (in C)

BEGIN DECLARE SECTIONj
int thisUid; float thisPop;
END DECLARE SECTION;
DECLARE ABCMember CURSOR FOR
SELECT uid, pop FROM User

WHERE uid IN (SELECT uid FROM Member WHERE gid = 'abc')
FOR UPDATE;

OPEN ABCMember;
WHENEVER NOT FOUND DO breakj
while (1) {
FETCH ABCMember INTO :thisUid, :thisPop;
printf("uid %d: current pop is %f\n", thisUid, thisPop);

printf("Enter new popularity: ");
scanf ("%f", &thisPop);
UPDATE User SET pop = :thisPop
WHERE CURRENT OF ABCMember;

CLOSE ABCMember;

Adding SQL to a language

* Example: LINQ (Language Integrated Query) for
Microsoft .NET languages (e.g., C#)

int someValue = 5;
var results = from c in someCollection
let x = someValue * 2
where c.SomeProperty < x
select new {c.SomeProperty, c.OtherProperty};
foreach (var result in results) {
Console.WriteLine(result);

* Automatic data mapping and query translation
* But syntax may vary for different host languages

