XML, DTD, and
XML Schema

Introduction to Databases
CompSci 316 Fall 2016

COMPUTER SCIENCE

10/20/16

Announcements (Thu. Oct. 20)

assigned today; due in ~2 weeks

graded
* Mean: 77.4 + 1.4 extra credit = 78.8

* Median: 80; highest: 106
* Sample solution has been posted
* Two problems where folks had most trouble:
* FD implication
* Exactly-2in RA
feedback to be emailed this
weekend

Structured vs. unstructured data

* Relational databases are highly structured
* All data resides in tables
* You must define schema before entering any data
* Every row confirms to the table schema
* Changing the schema is hard and may break many things

* Texts are highly unstructured

* Data s free-form

* There is no pre-defined schema, and it’s hard to
define any schema

* Readers need to infer structures and meanings

What’s in between these two extremes?

10/20/16

Jun Yang

Proessor

Depariment of Computer Science
Duke Universits

Students Teaching personal

Hones Shor G
B s A W =

€0 -

Published Work

1. Albert Yu, Pankaj k. 4 AMAZON

Semi-structured data

* Observation: most data have some structure, e.g.:
* Book: chapters, sections, titles, paragraphs, references,
index, etc.
* Item for sale: name, picture, price (range), ratings,
promotions, etc.
* Web page: HTML
* Ideas:
* Ensure data is “well-formatted”
* If needed, ensure data is also “well-structured”
« But make it easy to define and extend this structure

* Make data “self-describing”

HTML: language of the Web

<h1>Bibliography</hl>
<p><i>Foundations of Databases</i>,

Abiteboul, Hull, and Vianu Bibliography

Addison Wesley, 1995

<p>.. Foundations of Databases, Abiteboul, Hull, and Vianu

Addison Wesley, 1995

Data on the Web, Abiteboul, Buneman, and Suciu
Morgan Kaufmann, 1999

* It’s mostly a “formatting” language

* It mixes presentation and content

* Hard to change presentation (say, for different displays)
* Hard to extract content

XML: eXtensible Markup Language

<bibliography>
<book>
<title>Foundations of Databases</title> R T
<author>Abiteboul</author> Bibliography
<author>Hull</author>
<author>Vianu</author> Foundations of Databases, Abiteboul, Hull, and Vianu

<publisher>Addison Wesley</publisher> Addison Wesley, 1995
<year>1995</year>
</book>
<book>..</book>
</bibliography>

Data on the Web, Abiteboul, Buneman, and Suciu
Morgan Kaufmann, 1999

* Text-based
* Capture data (content), not presentation

* Data self-describes its structure
* Names and nesting of tags have meanings!

10/20/16

Other nice features of XML

: Just like HTML, you can ship XML data

across platforms

* Relational data requires heavy-weight API’s

: You can represent any information

(structured, semi-structured, documents, ...)

* Relational data is best suited for structured data

: Since data describes itself, you can

change the schema easily

* Relational schema is rigid and difficult to change

<bibliography>
<book ISBN="ISBN-10" price="80.00">
H <title>Foundations of Databases</title>
terminology = bl
<author>Hul1</author>
<author>Vianu</author>
<publisher>Addison Wesley</publisher>
<year>1995</year>

names: book, title,...gede.
:<book>,<title>,...
:</book>,</title>,...
* An is enclosed by a pair of start and end
tags: <book>..</book>
* Elements can be nested:
<book>..<title>..</title>..</book>
* Empty elements: <is textbook></is textbook>
+ Canbe abbreviated: <is_textbook/>
* Elements can also have :
<book ISBN="_" price="80.00">

Ordering generally matters, except for attributes

Well-formed XML documents

A XML document

* Follows XML lexical conventions
* Wrong: <section>We show that x < 0..</section>
* Right:<section>We show that x < 0..</section>

« Other special entities: > becomes and & becomes
* Contains a single root element

* Has properly matched tags and properly nested
elements
* Right:
<section>..<subsection>..</subsection>..</section>
* Wrong:
<section>..<subsection>..</section>..</subsection>

10/20/16

A tree representation
Eitorrari)

Foundations Abiteboul Hull

of Databases

Introduction In this
section we
introduce the
notion of

semi-
structured

data

More XML features

forapps:<? .. 7>
* An XML file typically starts with a version declaration using this
syntax: <?xml version="1.0"?>

:<!-- Comments here -->
:<!|[CDATA[Tags: <book>,..]1]>
and

<person id="o0l2"><name>Homer</name>..</person>

<person id="034"><name>Marge</name>..</person>

<person id="056" father="o12" mother="034">
<name>Bart</name>..

</person>...

allow external schemas and qualified names
<myCitationStyle:book xmlns:myCitationStyle="http://../mySchema">
<myCitationStyle:title>.</myCitationStyle:title>

<myCitationStyle:author>.</myCitationStyle:author>..
</book>

* And more...

Now for some
more structure...

htips: ikimedi wiki[File:Hundertwasser 04.1p

10/20/16

Valid XML documents

*A XML document conforms to a

* ADTDis optional
* A DTD specifies a grammar for the document
« Constraints on structures and values of elements, attributes, etc.

* Example

<IDOCTYPE bibliography [
<!ELEMENT bibliography (book+)>
<!ELEMENT book (title, author*, publisher?, year?, section¥*)>
<!ATTLIST book ISBN CDATA #REQUIRED>
<!ATTLIST book price CDATA #IMPLIED>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT publisher (#PCDATA)>
<!ELEMENT year (#PCDATA)>
<!ELEMENT i (#PCDATA)>
<IELEMENT content E#PCDATA|i)*> .
<!ELEMENT section (title, content?, section*)>

DTD explained

<!DOCTYPE bibliography [
bibliography is the root element of the document
<!ELEMENT bibliography (booldt One or more
bibliography consists of a séquence of one or more book elements
<!ELEMENT book (title, authog*, publisher?, year?, section¥*)>
Zero or one
rbZero or more
book consists of a title, zero or more authors,
an optional publisher, and zero or more section’s, in sequence
<!ATTLIST book ISBN ID #REQUIRED>
book has a required ISBN attribute which is a unique identifier
<!ATTLIST book price CDATA #IMPLIED>
book has an optional (#IMPLIED)
price attribute which contains <bibliography>
<book ISBN="ISBN-10" price="80.00">
character data <titlesFoundations of Databases</title

<author>Abiteboul</author>
<author>Hull</author>

Other attribute types include <author>Vianu</author>

IDREF (reference to an ID) <publisher>Addison Wesley</publisher>
) <year>1995</year>

IDREFS (space-separated list of references), ok>.

enumerated list, etc. </bibliography>

DTD explained (cont’d)

<!ELEMENT title (#PCDATA)> PCDATA is text that will be parsed
<!ELEMENT author (#PCDATA)> * &1t; etc. will be parsed as entities
<!ELEMENT publisher (#PCDATA)> . ysea CDATA section to include text verbatim
<!ELEMENT year (#PCDATA)>
<!ELEMENT i (#PCDATA)>

author, publisher, year, and i contain
<!ELEMENT content (#PCDATA|i)*>

content contains : text optionally interspersed with i elements

<!ELEMENT section (title, content?, section¥)>

Each section begins witha title,

followed by an optional content, <section><title>Introduction</title>
<content>In this section we introduce
1> and then zero ormore the notion of <i>semi-structured data</i>.
(sub) section’s B e
<section><title>XML</title>
<content>XML stands for..</content>
<[section>
<section><title>DTD</title>
<section><title>Definition</title>
<content>DTD stands for..</content>
</section>
<section><title>Usage</title>
<content>You can use DTD to..</content>
</section>
<[/section>
</section>

10/20/16

Using DTD

* DTD can be included in the XML source file

+ <?xml version="1.0"?>
<!DOCTYPE bibliography
]
<bibliography>
:/.l;ibliography>
* DTD can be external

+ <?xml version="1.0"?>
<!DOCTYPE bibliography "../dtds/bib.dtd">
<bibliography>

ibliography>
+ <?xml version="1.0"7>
IDOCTYP htm "-

<html>

</html>

Annoyance: content grammar

* Consider this declaration:

<!ELEMENT pub-venue
((name, address, month, year) |
(name, volume, number, year))>

o I ” means “or"
* Syntactically legal, but won’t work
* Because of SGML compatibility issues

* When looking at name, a parser would not know which
way to go without looking further ahead

* Requirement: content declaration must be

» Can we rewrite it into an equivalent, deterministic one?

* Also, you cannot nest mixed content declarations
* lllegal: <tELEMENT Section (title, (#PCDATA|i)*, section*)>

Annoyance: element name clash

* Suppose we want to represent book titles and
section titles differently
* Book titles are pure text: (#PCDATA)
* Section titles can have formatting tags:
(#PCDATA | i|b |math)*
* But DTD only allows one title declaration!
* Workaround: rename as book-title and
section-title?
* Not nice—why can’t we just infer a title’s context?

10/20/16

Annoyance: lack of type support

* Too few attribute types: string (CDATA), token (e.g.,
ID, IDREF), enumeration (e.g., (red|green|blue))
* What about integer, float, date, etc.?

* ID not typed

* No two elements can have the same id, even if they have
different types (e.g., book vs. section)

* Difficult to reuse complex structure definitions
* E.g.: already defined element E1 as (blah, bleh,
foo?, bar¥, ..);wantto define E2 to have the same
structure
in DTD provide a workaround
E.struct '(blah, bleh, foo?, bar¥*, .)'
+ <!ELEMENT El %E.struct;>
« <!ELEMENT E2 %E.struct;>
* Something less “hacky”?

Now for even
more structure support...

hep:/ 1d tent/arcicles/2012/11/10] £9207¢2452179065 . jpg

XML Schema

» A more powerful way of defining the structure and
constraining the contents of XML documents
* An XML Schema definition is itself an XML
document
* Typically stored as a standalone .xsd file
* XML (data) documents refer to external .xsd files

* W3C recommendation

* Unlike DTD, XML Schema is separate from the XML
specification

10/20/16

XML Schema definition (XSD)

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
Defines xs to be the namespace
described in the URL

Uses of xs : within the xs : schema element now
refer to tags from this namespace

</xs:schema>

XSD example

<xs: name="book">We are now defining an element named book
cxs: -Declares a structure with child elements/attributes as opposed to just text;
<xs: ~Declares a sequence of child elements, like “(..., ..., ...)” in DTD

<xs:element nam itlen | A leaf element with string content

<xs:element name="author" type="xs:string" Like author* in DTD
/5
<xs:element name="publisher" type="xs:string'Like publisher? inDTD
/>
A leaf element with integer content

wings
Like section* in DTD; section is defined elsewhere

<xs:element

<xs:element
minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs: name="ISBN" type=" ing" q qn/> .
Declares an attribute unger book... and this attribute is required
s ibute name="pricel. § Kk . .
sxsiattribute name="brictpicunbite hasa decimal Valug and itis optional
</xs:complexType>

</xs:element>

XSD example cont’d

<xs:element name="section">
<xs:complexType>

<xs:sequence> Another title definition; can be different

<xs:element name=" o type="xs:string"/> frombook/title

<xs:element name="content" minOccurs="0" maxOccurs="1">
Declares mixed content

(text interspersed with structure below)
Jecurs="unbounded "Min/maxOccurs can be

<xs:complexType mixed="
A compositor like
Xs:sequence;
this one declares <xs:element name="4ij
alist of alternatives, <xs:element name=/b" type="xs:string"/>
)"

<xs:choice minOccurs=

type="xs:string"/>

</xs:choice>

Like (#PCDATA|1i|b)*in DTD

in DTD

</xs:complexTypes
</xs:element>
<xs:element rgf="section" minOccurs="0" maxOccurs="unbounded"/>
Recursive definition
</xs:sequence>
</xs:complexType>

</xs:element>

attached to compositors too

10/20/16

XSD example cont’d

To complete bib.xsd:
<xs:element name="bibliography">
<xs:complexType>
<xs:sequence>
<xs:element ref="book" minOccurs=“1" maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>
</xs:element>
Touse bib.xsd in an XML document:
<?xml version="1.0"?>
<bibliography xmlr

si="http 3.0 001/XMLSchema-in:

xsi:noNamespaceSchemaLocation="file:bib
<book>... ..</book>
<book>... ..</book>

</bibliography>

Named types

* Define once:
<xs:complexType name="formattedTextType" mixed="true">
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="i" type="xs:string"/>
<xs:element name="b" type="xs:string"/>
</xs:choice>
</xs:complexType>

Use elsewhere in XSD:

<xs:element name="title" type="formattedTextType"/>

<xs:element name="content" type="formattedTextType"
minOccurs="0" maxOccurs="1"/>

Restrictions
<xs:simpleType name="priceType">
<xs: >
<xS: value="0.00"/>

<[/xs:restriction>

</xs:simpleType>

<xs:simpleType name="statusType">

<xs: >
<xs: value="in stock"/>
<xs: value="out of stock"/>
<xS: value="out of print"/>

</xs:restriction>

</xs:simpleType>

Keys

<xs:element name="bibliography">

<xs:complexType>.. .. </xs:complexType>

</xs:element>

* Under any bibliography, elements reachable by
selector “. /book” (i.e., book child elements) must have
unique values for field “@LSBN"’ (i.e., 1SBN attributes)

* In general, a key can consist of multiple fields (multiple
<xs:field> elements under <xs :key>)

* More on XPath in next lecture

Foreign keys

* Suppose content can reference books

<xs:element name="content"

<xs:complexType mixed:
<xs:choice minOccur;
<xs:element na
<xs:element na

s:field xpath="
</xs:key>

</xs:choice> </xs:element>
</xs: complexType>
</xs:element>

* Under bibliography, for elements reachable by selector
“.//book-ref” (i.e., any book-ref underneath):
values of field “@LSBN” (i.e., ISBN attributes) must appear as
values of bookKey, the key referenced
* Make sure keyref is declared in the same scope

10/20/16

10

Why use DTD or XML Schema?

* Benefits of not using them
* Unstructured data is easy to represent
* Overhead of validation is avoided

* Benefits of using them

10/20/16

XML versus relational data

Relational data XML data

* Schema is always fixed in * Well-formed XML does not
advance and difficult to require predefined, fixed
change schema

* Simple, flat table structuress Nested structure;
ID/IDREF(S) permit

arbitrary graphs
* Ordering of rows and * Ordering forced by
columns is unimportant document format; may or

may not be important
* Exchange is problematic ¢ Designed for easy exchange

* “Native” support in all * Often implemented as an
serious commercial DBMS “add-on” on top of relations
Case study

* Design an XML document representing cities,
counties, and states
* For states, record name and capital (city)
* For counties, record name, area, and location (state)
* For cities, record name, population, and location (county
and state)
* Assume the following:
* Names of states are unique
* Names of counties are only unique within a state
* Names of cities are only unique within a county
* Acity is always located in a single county
* A county is always located in a single state

11

name xs:string
area xs:decimal

id xs:string
name xs:string
population xs:integer

Declare in geo_db with
Selector . /state -
Field @name Declare
Selector . / county
Field @name
Declare ingeo_db with

Selector . /state/county/city

Field @id
feld &1 Declare

Selector . /state
Field @capital city_id

in state with
Declare in county with
Selector . /city
Field @name
in geo_db referencing 5 Wit

10/20/16

12

