XPath and XQuery

Introduction to Databases
CompSci 316 Fall 2016

E- DUKE
COMPUTER SCIENCE

Announcements (Tue. Oct. 25)

due in two weeks

emailed
 Milestone #2 due in 2% weeks

Query languages for XML

* XPath
* Path expressions with conditions

< Building block of other standards (XQuery, XSLT, XLink,
XPointer, etc.)

* XQuery
* XPath + full-fledged SQL-like query language

 XSLT
» XPath + transformation templates

Example DTD and XML

<?xml version="1.0"?7>

<'DOCTYPE blbllo%raph

ELEMENT b llograEhy (book+)>

< ELEMENT book (it

<!ATTLIST book ISBN CDATA #REQUIRED>
<!ATTLIST book price CDATA #IMPLIED>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT publisher (#PCDATA)>
<!ELEMENT year é#PCDATA)>
<!ELEMENT 1 (#PCDATA)>
<!ELEMENT content (#PCDATA|i)*>

| <!ELEMENT section (title, content?, section¥*)>
>

<bibliogra hg

<book N="ISBN-10" price="80.00">
<title>Foundations of Databases</t1tle>
<author>Abiteboul</author>
<author>Hull</author>
<author>Vianu</author>
<publisher>Addison Wesley</publisher>
<year>1995</year>
<section>.. </sect10n>

</book>

</bibliography>

author¥ ublisher?, year?,

section¥*)>

XPath

* XPath specifies path expressions that match XML
data by navigating down (and occasionally up and
across) the tree

* Example
* Query:

* Like a file system path, except there can be multiple
“subdirectories” with the same name

e Result: all author elements reachable from root via the
path /bibliography/book/author

Basic XPath constructs

separator between steps in a path
matches any child element with this tag name
matches any child element

matches the attribute with this name
matches any attribute

matches any descendent element or the
current element itself

matches the current element
matches the parent element

Simple XPath examples

* All book titles

* All book ISBN numbers

* All title elements, anywhere in the document
* All section titles, anywhere in the document

* Authors of bibliographical entries (suppose there
are articles, reports, etc. in addition to books)

Predicates in path expressions

matches the “current” element if
condition evaluates to true on the current element

* Books with price lower than $50
/bibliography/book
« XPath will automatically convert the price string to a
numeric value for comparison

* Books with author “Abiteboul”
/bibliography/book

* Books with a publisher child element
/bibliography/book

* Prices of books authored by “Abiteboul”
/bibliography/book [@price

More complex predicates

Predicates can use , 0T, and

* Books with price between $40 and $50
/bibliography/book

* Books authored by “Abiteboul” or those with price
no lower than $50
/bibliography/book

/bibliography/book

* Any difference between these two queries?

Predicates involving node-sets

* There may be multiple authors, so author in
general returns a (in XPath terminology)

* The predicate evaluates to true as long as it
evaluates in the node-set,
i.e., at least one author is “Abiteboul”

* Tricky query
/bibliography/book

* Will it return any books?

XPath operators and functions

Frequently used in conditions:
))))
true if string x contains string y
counts the number nodes in node-set

returns the “context position”
(roughly, the position of the current node in the node-
set containing it)

returns the “context size” (roughly, the size
of the node-set containing the current node)

returns the tag name of the current element

More XPath examples

* All elements whose tag names contain “section” (e.g.,
“subsection”)

e Title of the first section in each book

e A shorthand:
e Title of the last section in each book

* Books with fewer than 10 sections

* All elements whose parent’s tag name is not “book”

A tricky example

* Suppose for amoment that price is a child
element of book, and there may be multiple
prices per book

* Books with some price in range [20, 50]

* Wrong answer:
/bibliography/book

 Correct answer:
/bibliography/book

De-referencing IDREF’s

returns the element with identifier
* Suppose that books can reference other books

<section><title>Introduction</title>
XML is a hot topic these days; see
for more details..
<[/section>

* Find all references to books written by “Abiteboul”
in the book with “ISBN-10"

/bibliography/book[@ISBN='ISBN-10"]
| [bookref [[author="Abiteboul']
Or simply:
[[bookref [[author="Abiteboul']

General XPath location steps

* Technically, each XPath query consists of a series of
separated by /

* Each location step consists of

e An :one of self, attribute, parent, child,
ancestor,'ancestor-or-self,'descendant,
descendant-or-self, following, following-
sibling, preceding,'preceding-sibling,’and
namespace

¢ A : either a name test (e.g., book, section, *)ora
type test (e.g., text (), node (), comment ()), separated
from the axis by : :

* Zero of more (or conditions) enclosed in square
brackets
These produce result node-sets in reverse document

order; others () produce node-sets in document order

Example of verbose syntax

Verbose (axis, , predicate):

/

/ [s s ='TSBN-10"]
/ ..
/

Abbreviated:

/bibliography/book[@ISBN='ISBN-10']//title
e child isthe default axis
e [/ stands for /[descendant-or-self: :node()/

Some technical details on evaluation

Given a context node, evaluate a location path as follows:
1. Start with node-set N = {context node}

2.For each location step, from left to right:
o [J « @
* Foreachnodenin N:

. Usin&n as the context node, compute a node-set N’ from the axis
and the node-test

* Each predicate in turn filters N', in order
* Foreachnoden’in N', evaluate predicate with the following context:
» Context nodeisn’
 Context size is the number of nodes in N’
 Context position is the position of n’ within N’
« U< UUN'

s N«<U
3.Return N

One more example

* Which of the following queries correctly find the third
author in the entire input document?

* Same as /descendant-or-self::node()/author[position()=3]
Finds all third authors (for each publication)

Returns the third element or text node in the document
if itisan author

Correct!

After the first condition is passed, the evaluation context changes:
* Context size: # of nodes that passed the first condition
* Context position: position of the context node within the list of nodes

XQuery

* XPath + full-fledged SQL-like query language

* XQuery expressions can be
» XPath expressions
* FLWOR expressions
* Quantified expressions
* Aggregation, sorting, and more...

* An XQuery expression in general can return a new
result XML document

* Compare with an XPath expression, which always
returns a sequence of nodes from the input document
or atomic values (boolean, number, string, etc.)

A simple XQuery based on XPath

Find all books with price lower than $50

<result>{
doc("bib.xml") /bibliography/book[@price<50]

}</result>
* Things outside { }’s are copied to output verbatim

* Things inside { }’s are evaluated and replaced by the

results
* doc("bib.xml") specifies the document to query
 Can be omitted if there is a default context document

* The XPath expression returns a sequence of book elements
* These elements (including all their descendants) are copied to
output

20

21

FLWR expressions

* Retrieve the titles of books published before 2000,
together with their publisher

<result>{
for $b in doc("bib.xml") /bibliography/book
let Sp := Sb/publisher
where S$b/year < 2000

return : loop
<book> » Sbranges over the result sequence, getting
{ Sb/title } one item at a time
{ Sp } : “assignment”’
</book> * S$p gets the entire result of Sb/publisher
}</result> (possibly many nodes)

: filtering by condition
: result structuring
* Invoked in the “innermost loop,” i.e., once
for each successful binding of all query
variables that satisfies where

An equivalent formulation

* Retrieve the titles of books published before 2000,
together with their publisher

<result>{
for $b in doc("bib.xml") /bibliography/book[year<2000]
return
<book>
{ Sb/title }
{ Sb/publisher }
</book>
}</result>

22

23

Another formulation

* Retrieve the titles of books published before 2000,
together with their publisher

<result>{

for Sb in doc("bib.xml)/blbllography/book,} Nested loop

where S$b/year < 2000

return
<book> * Is this query equivalent to the previous two?
{ Sb/title } * Yes, if there is one publisher per book
{ Sp } No, in general
</book> « Two result book elements will be
y</result> created for a book with two publishers

* No result book element will be created
for a book with no publishers

Yet another formulation

* Retrieve the titles of books published before 2000,
together with their publisher

<result>{

where S$b/year < 2000

return
<book>
{ Sb/title } * |s this query correct?
{ Sb/publisher } * No!
</book> * It will produce only one output book
y</result> element, with all titles clumped together

and all publishers clumped together
* All books will be processed (as long as one is
published before 2000)

24

25

Subqueriesin return

» Extract book titles and their authors; make title an
attribute and rename author to writer

<bibliography>{
for $b in doc("bib.xml") /bibliography/book
return
<book title=" ">

</book>
}</bibliography>
*normalize-space (string) removes leading and
trailing spaces from string, and replaces all internal
sequences of white spaces with one white space

IWhat happlens if we replace it with Sa?

26

An explicit join

* Find pairs of books that have common author(s)

<result>{

for Sbl in doc("bib.xml")//book
for $b2 in doc("bib.xml")//book
where Sbl/author = S$b2/author
and $bl/title > Sb2/title
return
<pair>
{Sbl/title}
{Sb2/title}
</pair>
}</result>

< These are string comparisons,
not identity comparisons!

27

Existentially quantified expressions

e Canbe usedinwhere as a condition

* Find titles of books in which XML is mentioned in
some section

<result>{
for Sb in doc("bib.xml")//book

where (

return Sb/title
}</result>

Universally quantified expressions

e Canbe usedinwhere as a condition

* Find titles of books in which XML is mentioned in
every section

<result>{
for Sb in doc("bib.xml")//book

where (

return Sb/title
}</result>

28

29

Aggregation

* List each publisher and the average prices of all its books

<result>{
for Spub in (doc("bib.xml")//publisher)
let $price := (doc("bib.xml")//book[publisher=Spub]/@price)
return

<publisherpricing>
<publisher>{S$pub}</publisher>
<avgprice>{Sprice}</avgprice>
</publisherpricing>
}</result>

* distinct-values(collection) removes duplicates by value
* If the collection consists of elements (with no explicitly declared types),
they are first converted to strings representing their “normalized
contents”
* avg(collection) computes the average of collection (assuming
each item in collection can be converted to a numeric value)

30

Conditional expression

* List each publisher and, only if applicable, the average
prices of all its books

<result>{
for Spub in distinct-values(doc("bib.xml")//publisher)
let Sprice := avg(doc("bib.xml")//book[publisher=$pub]/@price)
return
<publisherpricing>
<publisher>{Spub}</publisher>
{ if (Sprice)
then <avgprice>{Sprice}</avgprice>
else () }
</publisherpricing>
}</result>

* Use anywhere you’d expect a value, e.g.:

e let Sfoo := if (..) then .. else ..
e return <bar blah="{ if (..) then .. else .. }"/>

Empty list = nothing

Sorting (a brief history)

* A path expression in XPath returns a sequence of
nodes according to

* for loop will respect the ordering in the sequence

* August 2002 (http://www.w3.0rg/TR/2002/WD-xquery-20020816/)

* Introduce an operator
to output results in a user-specified order

* Example: list all books with price higher than $100, in
order by first author; for books with the same first
author, order by title

<result>{
doc("bib.xml")//book[@price>100]

}</result>

31

32

Tricky semantics

* List titles of all books, sorted by their ISBN

<result>{
(doc("bib.xml")//bookYﬁ?rt by (@ISBN))/title
}</result> 0 *

* What is wrong?

* The last step in the path expression will return nodes in
document order!

e Correct versions

<result>{

for $b in doc("bib.xml")//book sort by (@ISBN)
return $b/title

}</result>

<result>{

doc("bib.xml")//book/title sort by (../@ISBN)
}</result>

33

Current version of sorting

Since June 2006
has been ditched

e A new clause is added to FLWR
 Which now becomes FLWOR

* Example: list all books in order by price from high to
low; for books with the same price, sort by first
author and then title

<result>{
for Sb in doc("bib.xml")//book[@price>100]

Preserve input order

Order as number, not string
Override default (ascending)

l Empty value considered smallest

return Sb
}</result>

Summary

* Many, many more features not covered in class

* XPath is very mature, stable, and widely used
* Has good implementations in many systems
* Is used in many other standards

* XQuery is also fairly popular
* Has become the SQL for XML
* Has good implementations in some systems

XQuery vs. SQL

* Where did the join go?

* Is navigational query going to destroy physical data
independence?

* Strong ordering constraint
* Can be overridden by { for.. }
* Why does that matter?

