Query Processing
Introduction to Databases
CompSci 316 Fall 2016

Announcements (Tue., Nov. 15)
• Homework #3 sample solution posted in Sakai
• Homework #4 assigned today; due on 12/01
• Project milestone #2 feedback to be emailed by this weekend

Overview
• Many different ways of processing the same query
 • Scan? Sort? Hash? Use an index?
 • All have different performance characteristics and/or make different assumptions about data
• Best choice depends on the situation
 • Implement all alternatives
 • Let the query optimizer choose at run-time
Notation

- Relations: R, S
- Tuples: r, s
- Number of tuples: $|R|, |S|$
- Number of disk blocks: $B(R), B(S)$
- Number of memory blocks available: M
- Cost metric
 - Number of I/O's
 - Memory requirement

Scanning-based algorithms

Table scan

- Scan table R and process the query
 - Selection over R
 - Projection of R without duplicate elimination
- I/O's: $B(R)$
 - Trick for selection: stop early if it is a lookup by key
 - Memory requirement: 2
- Not counting the cost of writing the result out
 - Same for any algorithm!
 - Maybe not needed—results may be pipelined into another operator
Nested-loop join

\[R \bowtie_p S \]

- For each block of \(R \), and for each \(r \) in the block:
 - For each block of \(S \), and for each \(s \) in the block:
 - Output \(rs \) if \(p \) evaluates to true over \(r \) and \(s \)
- \(R \) is called the outer table; \(S \) is called the inner table
- I/O's: \(B(R) + |R| \cdot B(S) \)
- Memory requirement: \(3 \)

Improvement: block-based nested-loop join

More improvements

- Stop early if the key of the inner table is being matched
- Make use of available memory
 - Stuff memory with as much of \(R \) as possible, stream \(S \) by, and join every \(S \) tuple with all \(R \) tuples in memory
 - I/O's: \(B(R) + \frac{|R| \cdot B(S)}{|R|} \cdot B(S) \)
 - Or, roughly: \(B(R) \cdot B(S) \)
- Memory requirement: \(M \) (as much as possible)
- Which table would you pick as the outer?

Sorting-based algorithms

http://en.wikipedia.org/wiki/Mail_sorter#mediaviewer/File:Mail_sorting,1951.jpg
External merge sort

Remember (internal-memory) merge sort?
Problem: sort R, but R does not fit in memory

- Pass 0: read M blocks of R at a time, sort them, and write out a level-0 run
- Pass 1: merge $(M - 1)$ level-0 runs at a time, and write out a level-1 run
- Pass 2: merge $(M - 1)$ level-1 runs at a time, and write out a level-2 run
 - Final pass produces one sorted run

Toy example

- 3 memory blocks available; each holds one number
- Input: 1, 7, 4, 5, 2, 8, 3, 6, 9
- Pass 0
 - 1, 7, 4 → 1, 4, 7
 - 5, 2, 8 → 2, 5, 8
 - 9, 6, 3 → 3, 6, 9
- Pass 1
 - 1, 4, 7 + 2, 5, 8 → 1, 2, 4, 5, 7, 8
 - 3, 6, 9
- Pass 2 (final)
 - 1, 2, 4, 5, 7, 8 + 3, 6, 9 → 1, 2, 3, 4, 5, 6, 7, 8, 9

Analysis

- Pass 0: read M blocks of R at a time, sort them, and write out a level-0 run
 - There are $\left\lceil \frac{R}{M} \right\rceil$ level-0 sorted runs
- Pass i: merge $(M - 1)$ level-$(i - 1)$ runs at a time, and write out a level-i run
 - $(M - 1)$ memory blocks for input, 1 to buffer output
 - # of level-i runs $= \left\lceil \frac{\text{# of level-}(i-1)\text{runs}}{M-1} \right\rceil$
- Final pass produces one sorted run
Performance of external merge sort

- Number of passes: \(\log_{M-1} \left[\frac{B(R)}{M} \right] + 1 \)
- I/O’s
 - Multiply by \(2 \cdot B(R) \): each pass reads the entire relation once and writes it once
 - Subtract \(B(R) \) for the final pass
 - Roughly, this is \(O(B(R) \times \log_M B(R)) \)
- Memory requirement: \(M \) (as much as possible)

Some tricks for sorting

- Double buffering
 - Allocate an additional block for each run
 - Overlap I/O with processing
 - Trade-off:
- Blocked I/O
 - Instead of reading/writing one disk block at time, read/write a bunch (“cluster”)
 - More sequential I/O’s
 - Trade-off:

Sort-merge join

\[R \bowtie_{R.A=S.B} S \]

- Sort \(R \) and \(S \) by their join attributes; then merge
 \(r, s = \) the first tuples in sorted \(R \) and \(S \)
 Repeat until one of \(R \) and \(S \) is exhausted:
 - If \(r.A > s.B \) then \(s = \) next tuple in \(S \)
 - else if \(r.A < s.B \) then \(r = \) next tuple in \(R \)
 - else output all matching tuples, and
 \(r, s = \) next in \(R \) and \(S \)
- I/O’s: \(sorting + 2B(R) + 2B(S) \)
 - In most cases (e.g., join of key and foreign key)
 - Worst case is \(B(R) \cdot B(S) \): everything joins
Example of merge join

\[R: \begin{align*}
 r_1, A &= 1 \\
 r_2, A &= 3 \\
 r_3, A &= 3 \\
 r_4, A &= 5 \\
 r_5, A &= 7 \\
 r_6, A &= 7 \\
 r_7, A &= 8
\end{align*} \]

\[S: \begin{align*}
 s_1, B &= 1 \\
 s_2, B &= 2 \\
 s_3, B &= 3 \\
 s_4, B &= 3 \\
 s_5, B &= 8
\end{align*} \]

\[R \bowtie_{R.A=S.B} S: \begin{align*}
 r_1s_1 \\
 r_2s_3 \\
 r_2s_4 \\
 r_3s_3 \\
 r_3s_4 \\
 r_7s_5
\end{align*} \]

Optimization of SMJ

• Idea: combine join with the (last) merge phase of merge sort
• Sort: produce sorted runs for \(R \) and \(S \) such that there are fewer than \(M \) of them total
• Merge and join: merge the runs of \(R \), merge the runs of \(S \), and merge-join the result streams as they are generated.

\(R \) and \(S \) Sorted runs

Disk

Memory

Join

Merge

Performance of SMJ

• If SMJ completes in two passes:
 • I/O's: \(3 \cdot (B(R) + B(S)) \)
 • Memory requirement
 • We must have enough memory to accommodate one block from each run: \(M > \frac{B(R) + B(S)}{B(R) + B(S)} \)
 • \(M > \sqrt{B(R) + B(S)} \)
• If SMJ cannot complete in two passes:
 • Repeatedly merge to reduce the number of runs as necessary before final merge and join
Other sort-based algorithms

- Union (set), difference, intersection
 - More or less like SMJ
- Duplication elimination
 - External merge sort
 - Eliminate duplicates in sort and merge
- Grouping and aggregation
 - External merge sort, by group-by columns
 - Trick: produce “partial” aggregate values in each run, and combine them during merge
 - This trick doesn’t always work though
 - Examples:

Hashing-based algorithms

Hash join

\[R \bowtie_{R.A=S.B} S \]

- Main idea
 - Partition \(R \) and \(S \) by hashing their join attributes, and then consider corresponding partitions of \(R \) and \(S \)
 - If \(r.A \) and \(s.B \) get hashed to different partitions, they don’t join

Nested-loop join considers all slots
Hash join considers only those along the diagonal!
Partitioning phase

- Partition R and S according to the same hash function on their join attributes.

Probing phase

- Read in each partition of R, stream in the corresponding partition of S, join.
- Typically build a hash table for the partition of R.
- Not the same hash function used for partition, of course!

Performance of (two-pass) hash join

- If hash join completes in two passes:
 - I/O's: $3 \cdot (B(R) + B(S))$
 - Memory requirement:
 - In the probing phase, we should have enough memory to fit one partition of R: $M - 1 > \frac{B(R)}{B(R)}$
 - $M > \sqrt[3]{B(R)} + 1$
 - We can always pick R to be the smaller relation, so:
 $M > \sqrt[3]{\min(B(R), B(S))} + 1$
Generalizing for larger inputs

• What if a partition is too large for memory?
 • Read it back in and partition it again!
 • See the duality in multi-pass merge sort here!

Hash join versus SMJ

(Assuming two-pass)

• I/O’s: same

• Memory requirement: hash join is lower
 \[\min(B(R), B(S)) + 1 < \sqrt{B(R) + B(S)} \]
 • Hash join wins when two relations have very different sizes

• Other factors
 • Hash join performance depends on the quality of the hash
 • Might not get evenly sized buckets
 • SMJ can be adapted for inequality join predicates
 • SMJ wins if \(R \) and/or \(S \) are already sorted
 • SMJ wins if the result needs to be in sorted order

What about nested-loop join?
Other hash-based algorithms

• Union (set), difference, intersection
 • More or less like hash join
• Duplicate elimination
 • Check for duplicates within each partition/bucket
• Grouping and aggregation
 • Apply the hash functions to the group-by columns
 • Tuples in the same group must end up in the same partition/bucket
 • Keep a running aggregate value for each group
 • May not always work

Duality of sort and hash

• Divide-and-conquer paradigm
 • Sorting: physical division, logical combination
 • Hashing: logical division, physical combination
• Handling very large inputs
 • Sorting: multi-level merge
 • Hashing: recursive partitioning
• I/O patterns
 • Sorting: sequential write, random read (merge)
 • Hashing: random write, sequential read (partition)

Index-based algorithms

http://i1.trekearth.com/photos/28820/p2270994.jpg
Selection using index

- Equality predicate: $\sigma_{A=v}(R)$
 - Use an iSAM, B-tree, or hash index on $R(A)$
- Range predicate: $\sigma_{A>v}(R)$
 - Use an ordered index (e.g., ISAM or B-tree) on $R(A)$
 - Hash index is not applicable
- Indexes other than those on $R(A)$ may be useful
 - Example: B-tree index on $R(A, B)$
 - How about B-tree index on $R(B, A)$?

Index versus table scan

Situations where index clearly wins:
- Index-only queries which do not require retrieving actual tuples
 - Example: $\pi_A(\sigma_{A>v}(R))$
- Primary index clustered according to search key
 - One lookup leads to all result tuples in their entirety

Index versus table scan (cont’d)

BUT():
- Consider $\sigma_{A>v}(R)$ and a secondary, non-clustered index on $R(A)$
 - Need to follow pointers to get the actual result tuples
 - Say that 20% of R satisfies $A > v$
 - Could happen even for equality predicates
 - I/O’s for index-based selection: lookup + 20% $|R|$
 - I/O’s for scan-based selection: $B(R)$
 - Table scan wins if a block contains more than 5 tuples!
Index nested-loop join

\(R \bowtie_{R.A=S.B} S \)

- Idea: use a value of \(R.A \) to probe the index on \(S(B) \)
- For each block of \(R \), and for each \(r \) in the block:
 Use the index on \(S(B) \) to retrieve \(s \) with \(s.B = r.A \)
 Output \(r.s \)
- I/O's: \(B(R) + |R| \cdot \text{(index lookup)} \)
 Typically, the cost of an index lookup is 2-4 I/O's
 Beats other join methods if \(|R| \) is not too big
 Better pick \(R \) to be the smaller relation
- Memory requirement: 3

Zig-zag join using ordered indexes

\(R \bowtie_{R.A=S.B} S \)

- Idea: use the ordering provided by the indexes on \(R(A) \) and \(S(B) \) to eliminate the sorting step of sort-merge join
- Use the larger key to probe the other index
 - Possibly skipping many keys that don’t match

Summary of techniques

- Scan
 - Selection, duplicate-preserving projection, nested-loop join
- Sort
 - External merge sort, sort-merge join, union (set), difference, intersection, duplicate elimination, grouping and aggregation
- Hash
 - Hash join, union (set), difference, intersection, duplicate elimination, grouping and aggregation
- Index
 - Selection, index nested-loop join, zig-zag join