Query Processing

Introduction to Databases

CompSci 316 Fall 2016

Announcements (Tue., Nov. 15)

- Homework #3 sample solution posted in Sakai
- Homework #4 assigned today; due on 12/01
- Project milestone #2 feedback to be emailed by this weekend

Overview

- Many different ways of processing the same query
 - Scan? Sort? Hash? Use an index?
 - All have different performance characteristics and/or make different assumptions about data
- Best choice depends on the situation
 - Implement all alternatives
 - Let the query optimizer choose at run-time

Notation

- Relations: R, S
- Tuples: *r*, *s*
- Number of tuples: |*R*|, |*S*|
- Number of disk blocks: B(R), B(S)
- Number of memory blocks available: *M*
- Cost metric
 - Number of I/O's
 - Memory requirement

Scanning-based algorithms

Table scan

- Scan table R and process the query
 - Selection over R
 - Projection of R without duplicate elimination
- I/O's: <u>B(R)</u>
 - Trick for selection: stop early if it is a lookup by key
- Memory requirement: 2
- Not counting the cost of writing the result out
 - Same for any algorithm!
 - Maybe not needed—results may be pipelined into another operator

Nested-loop join

$R \bowtie_p S$

- For each block of *R*, and for each *r* in the block: For each block of *S*, and for each *s* in the block: Output *rs* if *p* evaluates to true over *r* and *s*
 - *R* is called the outer table; *S* is called the inner table
 - I/O's: $B(R) + |R| \cdot B(S)$
 - Memory requirement: 3

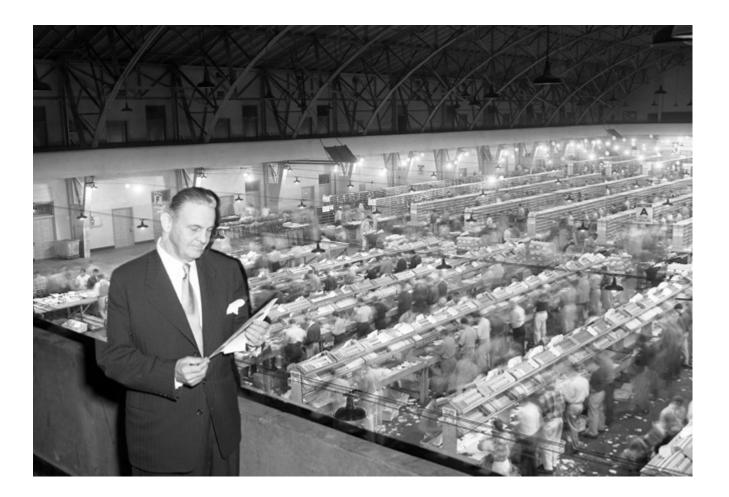
Improvement: block-based nested-loop join

- For each block of *R*, for each block of *S*: For each *r* in the *R* block, for each *s* in the *S* block: ...
 - I/O's: $B(R) + B(R) \cdot B(S)$
 - Memory requirement: same as before

More improvements

- Stop early if the key of the inner table is being matched
- Make use of available memory
 - Stuff memory with as much of *R* as possible, stream *S* by, and join every *S* tuple with all *R* tuples in memory
 - I/O's: $B(R) + \left[\frac{B(R)}{M-2}\right] \cdot B(S)$
 - Or, roughly: $B(R) \cdot B(S)/M$
 - Memory requirement: *M* (as much as possible)
- Which table would you pick as the outer?

Sorting-based algorithms

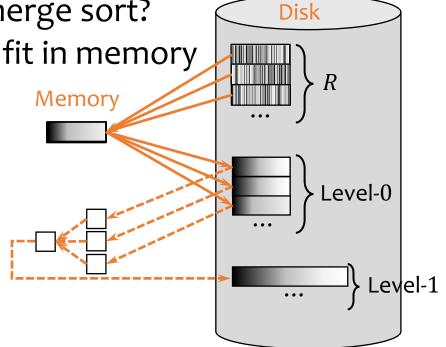


http://en.wikipedia.org/wiki/Mail_sorter#mediaviewer/File:Mail_sorting,1951.jpg

External merge sort

Remember (internal-memory) merge sort? Problem: sort *R*, but *R* does not fit in memory

- Pass 0: read M blocks of R at a time, sort them, and write out a level-0 run
- Pass 1: merge (M 1) level-0 runs at a time, and write out a level-1 run



- Pass 2: merge (M 1) level-1 runs at a time, and write out a level-2 run
- Final pass produces one sorted run

Toy example

- 3 memory blocks available; each holds one number
- Input: 1, 7, 4, 5, 2, 8, 3, 6, 9
- Pass 0
 - 1, 7, 4 \rightarrow 1, 4, 7
 - 5, 2, 8 → 2, 5, 8
 - 9, 6, 3 \rightarrow 3, 6, 9
- Pass 1
 - 1, 4, 7 + 2, 5, 8 → 1, 2, 4, 5, 7, 8
 - 3, 6, 9
- Pass 2 (final)
 - 1, 2, 4, 5, 7, 8 + 3, 6, 9 → 1, 2, 3, 4, 5, 6, 7, 8, 9

Analysis

- Pass 0: read M blocks of R at a time, sort them, and write out a level-0 run
 - There are $\left[\frac{B(R)}{M}\right]$ level-0 sorted runs
- Pass *i*: merge (*M* − 1) level-(*i* − 1) runs at a time, and write out a level-*i* run
 - (M 1) memory blocks for input, 1 to buffer output

• # of level-*i* runs =
$$\left[\frac{\text{# of level}-(i-1) \text{ runs}}{M-1}\right]$$

• Final pass produces one sorted run

Performance of external merge sort

- Number of passes: $\left[\log_{M-1} \left[\frac{B(R)}{M}\right]\right] + 1$
- I/O's
 - Multiply by $2 \cdot B(R)$: each pass reads the entire relation once and writes it once
 - Subtract B(R) for the final pass
 - Roughly, this is $O(B(R) \times \log_M B(R))$
- Memory requirement: *M* (as much as possible)

Some tricks for sorting

- Double buffering
 - Allocate an additional block for each run
 - Overlap I/O with processing
 - Trade-off: smaller fan-in (more passes)
- Blocked I/O
 - Instead of reading/writing one disk block at time, read/write a bunch ("cluster")
 - More sequential I/O's
 - Trade-off: larger cluster \rightarrow smaller fan-in (more passes)

Sort-merge join

$R \bowtie_{R.A=S.B} S$

- Sort R and S by their join attributes; then merge r, s = the first tuples in sorted R and S Repeat until one of R and S is exhausted: If r. A > s. B then s = next tuple in S else if r. A < s. B then r = next tuple in R else output all matching tuples, and r, s = next in R and S
- I/O's: sorting + 2B(R) + 2B(S)
 - In most cases (e.g., join of key and foreign key)
 - Worst case is $B(R) \cdot B(S)$: everything joins

Example of merge join

R:
 S:

$$R \bowtie_{R,A=S,B} S$$
:

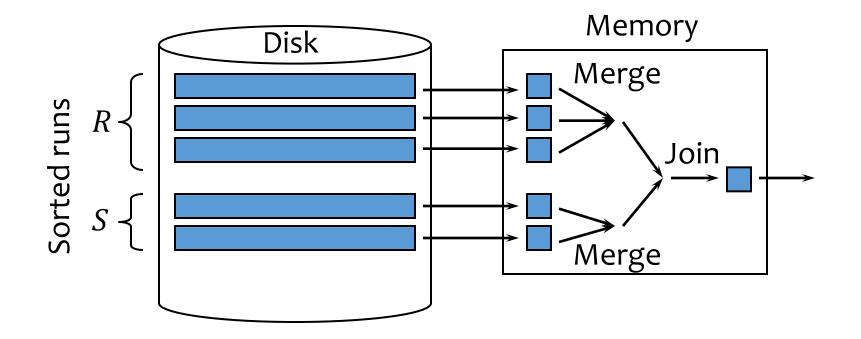
 \Rightarrow
 $r_1.A = 1$
 \Rightarrow
 $s_1.B = 1$
 r_1s_1
 \Rightarrow
 $r_2.A = 3$
 \Rightarrow
 $s_2.B = 2$
 r_2s_3
 $r_3.A = 3$
 \Rightarrow
 $s_3.B = 3$
 r_2s_4
 \Rightarrow
 $r_4.A = 5$
 $s_4.B = 3$
 r_2s_4
 \Rightarrow
 $r_5.A = 7$
 \Rightarrow
 $s_5.B = 8$
 r_3s_3
 \Rightarrow
 $r_6.A = 7$
 \Rightarrow
 $s_5.B = 8$
 r_3s_4
 \Rightarrow
 $r_7.A = 8$
 r_7s_7
 s_7s_7

16

 $r_7 s_5$

Optimization of SMJ

- Idea: combine join with the (last) merge phase of merge sort
- Sort: produce sorted runs for *R* and *S* such that there are fewer than *M* of them total
- Merge and join: merge the runs of *R*, merge the runs of *S*, and merge-join the result streams as they are generated!



Performance of SMJ

- If SMJ completes in two passes:
 - I/O's: $3 \cdot (B(R) + B(S))$
 - Memory requirement
 - We must have enough memory to accommodate one block from each run: $M > \frac{B(R)}{M} + \frac{B(S)}{M}$
 - $M > \sqrt{B(R) + B(S)}$
- If SMJ cannot complete in two passes:
 - Repeatedly merge to reduce the number of runs as necessary before final merge and join

Other sort-based algorithms

- Union (set), difference, intersection
 - More or less like SMJ
- Duplication elimination
 - External merge sort
 - Eliminate duplicates in sort and merge
- Grouping and aggregation
 - External merge sort, by group-by columns
 - Trick: produce "partial" aggregate values in each run, and combine them during merge
 - This trick doesn't always work though
 - Examples: SUM(DISTINCT ...), MEDIAN(...)

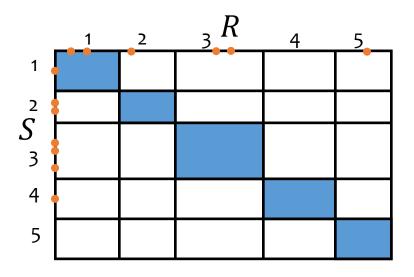
Hashing-based algorithms

http://global.rakuten.com/en/store/citygas/item/041233/

Hash join

$R \bowtie_{R.A=S.B} S$

- Main idea
 - Partition *R* and *S* by hashing their join attributes, and then consider corresponding partitions of *R* and *S*
 - If *r*. *A* and *s*. *B* get hashed to different partitions, they don't join

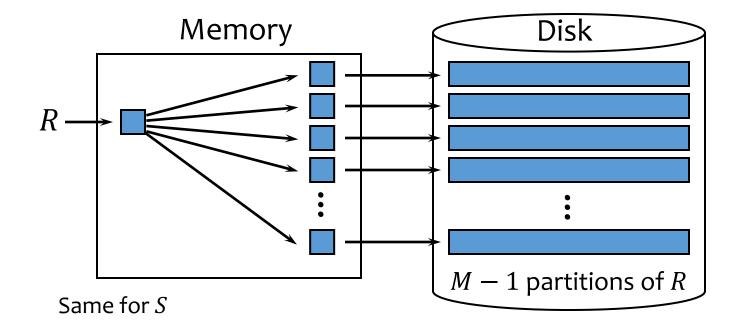


Nested-loop join considers all slots

Hash join considers only those along the diagonal!

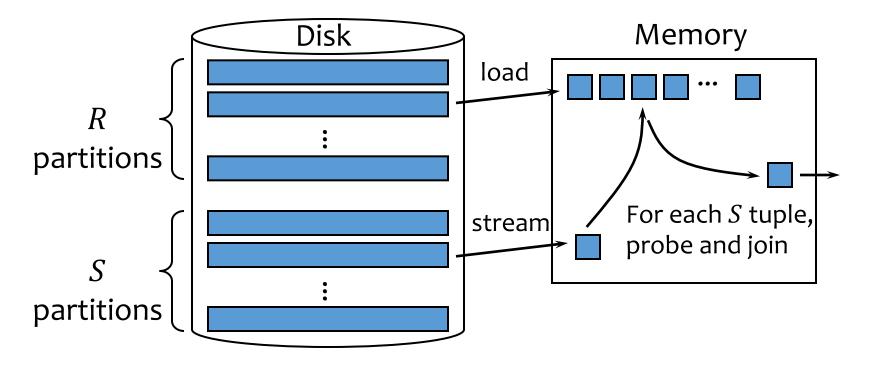
Partitioning phase

• Partition *R* and *S* according to the same hash function on their join attributes



Probing phase

- Read in each partition of *R*, stream in the corresponding partition of *S*, join
 - Typically build a hash table for the partition of *R*
 - Not the same hash function used for partition, of course!



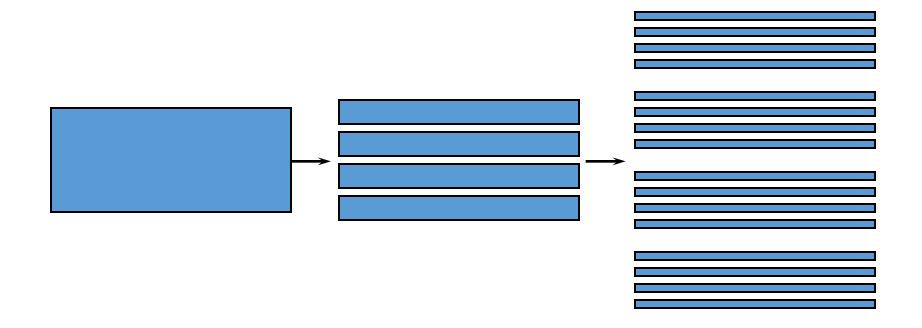
Performance of (two-pass) hash join

- If hash join completes in two passes:
 - I/O's: $3 \cdot (B(R) + B(S))$
 - Memory requirement:
 - In the probing phase, we should have enough memory to fit one partition of R: $M 1 > \frac{B(R)}{M-1}$
 - $M > \sqrt{B(R)} + 1$
 - We can always pick *R* to be the smaller relation, so:

 $M > \sqrt{\min(B(R), B(S))} + 1$

Generalizing for larger inputs

- What if a partition is too large for memory?
 - Read it back in and partition it again!
 - See the duality in multi-pass merge sort here?



Hash join versus SMJ

(Assuming two-pass)

- I/O's: same
- Memory requirement: hash join is lower
 - $\sqrt{\min(B(R), B(S))} + 1 < \sqrt{B(R) + B(S)}$
 - Hash join wins when two relations have very different sizes
- Other factors
 - Hash join performance depends on the quality of the hash
 - Might not get evenly sized buckets
 - SMJ can be adapted for inequality join predicates
 - SMJ wins if *R* and/or *S* are already sorted
 - SMJ wins if the result needs to be in sorted order

What about nested-loop join?

- May be best if many tuples join
 - Example: non-equality joins that are not very selective
- Necessary for black-box predicates
 - Example: WHERE user_defined_pred(R.A, S.B)

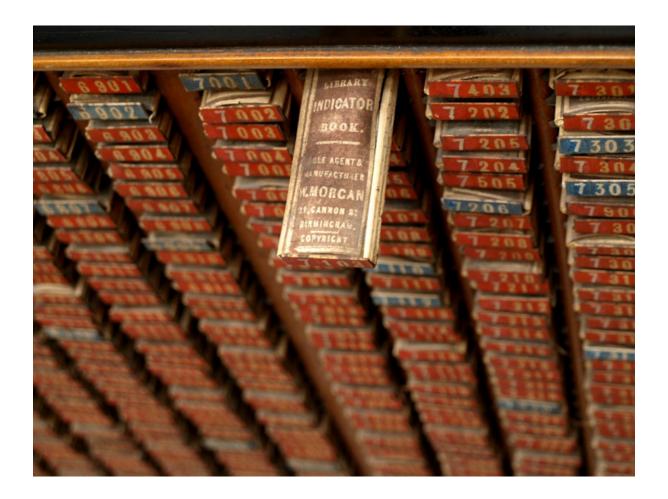
Other hash-based algorithms

- Union (set), difference, intersection
 - More or less like hash join
- Duplicate elimination
 - Check for duplicates within each partition/bucket
- Grouping and aggregation
 - Apply the hash functions to the group-by columns
 - Tuples in the same group must end up in the same partition/bucket
 - Keep a running aggregate value for each group
 - May not always work

Duality of sort and hash

- Divide-and-conquer paradigm
 - Sorting: physical division, logical combination
 - Hashing: logical division, physical combination
- Handling very large inputs
 - Sorting: multi-level merge
 - Hashing: recursive partitioning
- I/O patterns
 - Sorting: sequential write, random read (merge)
 - Hashing: random write, sequential read (partition)

Index-based algorithms



http://il.trekearth.com/photos/28820/p2270994.jpg

Selection using index

- Equality predicate: $\sigma_{A=v}(R)$
 - Use an ISAM, B⁺-tree, or hash index on R(A)
- Range predicate: $\sigma_{A>v}(R)$
 - Use an ordered index (e.g., ISAM or B^+ -tree) on R(A)
 - Hash index is not applicable
- Indexes other than those on R(A) may be useful
 - Example: B^+ -tree index on R(A, B)
 - How about B⁺-tree index on R(B, A)?

Index versus table scan

Situations where index clearly wins:

- Index-only queries which do not require retrieving actual tuples
 - Example: $\pi_A(\sigma_{A>\nu}(R))$
- Primary index clustered according to search key
 - One lookup leads to all result tuples in their entirety

Index versus table scan (cont'd)

BUT(!):

- Consider $\sigma_{A>v}(R)$ and a secondary, non-clustered index on R(A)
 - Need to follow pointers to get the actual result tuples
 - Say that 20% of R satisfies A > v
 - Could happen even for equality predicates
 - I/O's for index-based selection: lookup + 20% |R|
 - I/O's for scan-based selection: B(R)
 - Table scan wins if a block contains more than 5 tuples!

Index nested-loop join

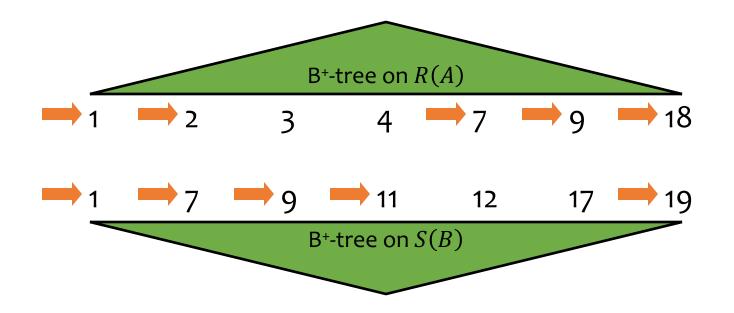
$R \bowtie_{R.A=S.B} S$

- Idea: use a value of R.A to probe the index on S(B)
- For each block of R, and for each r in the block:
 Use the index on S(B) to retrieve s with s. B = r. A
 Output rs
- I/O's: $B(R) + |R| \cdot (\text{index lookup})$
 - Typically, the cost of an index lookup is 2-4 I/O's
 - Beats other join methods if |R| is not too big
 - Better pick *R* to be the smaller relation
- Memory requirement: 3

Zig-zag join using ordered indexes

$R \bowtie_{R.A=S.B} S$

- Idea: use the ordering provided by the indexes on *R*(*A*) and *S*(*B*) to eliminate the sorting step of sort-merge join
- Use the larger key to probe the other index
 - Possibly skipping many keys that don't match



Summary of techniques

- Scan
 - Selection, duplicate-preserving projection, nested-loop join
- Sort
 - External merge sort, sort-merge join, union (set), difference, intersection, duplicate elimination, grouping and aggregation
- Hash
 - Hash join, union (set), difference, intersection, duplicate elimination, grouping and aggregation
- Index
 - Selection, index nested-loop join, zig-zag join