
11/17/16

1

Query Processing: 
A Systems View

Introduction to Databases
CompSci 316 Fall 2016

Announcements (Thu., Nov. 17)

• Homework #4 due on 12/01 (in two weeks)

2

A query’s trip through the DBMS
3

Parser

Validator

Optimizer

Executor

Result

SQL query SELECT name, uid
FROM Member, Group
WHERE Member.gid =

Group.gid;

Parse tree
<SFW>

<select-list>
<from-list>

<where-cond>

<table> <table>

<Query>

Member Group

……

Physical plan
PROJECT (name, gid)

MERGE-JOIN (gid)

SCAN (Member)
SCAN (Group)

SORT (gid)

Logical plan
𝜋name, uid

𝜎Member.gid=Group.gid

Member Group

×



11/17/16

2

Parsing and validation

• Parser: SQL → parse tree
• Detect and reject syntax errors

• Validator: parse tree → logical plan
• Detect and reject semantic errors

• Nonexistent tables/views/columns?
• Insufficient access privileges?
• Type mismatches?

• Examples: AVG(name), name + pop, User UNION Member
• Also

• Expand *
• Expand view definitions

• Information required for semantic checking is found in 
system catalog (which contains all schema information)

4

Logical plan

• Nodes are logical operators (often relational 
algebra operators)
• There are many equivalent logical plans

5

𝜋Group.name

𝜎User.name=“Bart” ∧ User.uid = Member.uid ∧Member.gid = Group.gid
×

Member

Group×

User
An equivalent plan: 𝜋Group.name

⋈Member.gid = Group.gid

Member

Group

User

⋈User.uid= Member.uid

𝜎name = “Bart”

Physical (execution) plan

• A complex query may involve multiple tables and 
various query processing algorithms
• E.g., table scan, index nested-loop join, sort-merge join, 

hash-based duplicate elimination…

• A physical plan for a query tells the DBMS query 
processor how to execute the query
• A tree of physical plan operators
• Each operator implements a query processing algorithm
• Each operator accepts a number of input tables/streams 

and produces a single output table/stream

6



11/17/16

3

Examples of physical plans

• Many physical plans for a single query
• Equivalent results, but different costs and assumptions!
FDBMS query optimizer picks the “best” possible physical plan

7

PROJECT (Group.name)

INDEX-NESTED-LOOP-JOIN (gid)

Index on Member(uid)

Index on Group(gid)

Index on User(name)

INDEX-SCAN (name = “Bart”)

INDEX-NESTED-LOOP-JOIN (uid)

PROJECT (Group.name)

MERGE-JOIN (gid)

SCAN (Group)SORT (gid)

MERGE-JOIN (uid)

SCAN (Member)

SORT (uid)

SCAN (User)

FILTER (name = “Bart”)

SELECT Group.name
FROM User, Member, Group
WHERE User.name = 'Bart'
AND User.uid = Member.uid AND Member.gid = Group.gid;

Physical plan execution

• How are intermediate results passed from child 
operators to parent operators?
• Temporary files

• Compute the tree bottom-up
• Children write intermediate results to temporary files
• Parents read temporary files

• Iterators
• Do not materialize intermediate results
• Children pipeline their results to parents

8

9

http://www.dreamstime.com/royalty-free-stock-image-basement-pipelines-grey-image25917236



11/17/16

4

Iterator interface

• Every physical operator maintains its own 
execution state and implements the following 
methods:
• open(): Initialize state and get ready for processing
• getNext(): Return the next tuple in the result (or a 

null pointer if there are no more tuples); adjust state to 
allow subsequent tuples to be obtained
• close(): Clean up

10

An iterator for table scan

• State: a block of memory for buffering input 𝑅; 
a pointer to a tuple within the block
• open(): allocate a block of memory
• getNext()
• If no block of 𝑅 has been read yet, read the first block 

from the disk and return the first tuple in the block
• Or null if 𝑅 is empty

• If there is no more tuple left in the current block, read 
the next block of 𝑅 from the disk and return the first 
tuple in the block
• Or null if there are no more blocks in 𝑅

• Otherwise, return the next tuple in the memory block

• close(): deallocate the block of memory

11

An iterator for nested-loop join
R: An iterator for the left subtree
S: An iterator for the right subtree
• open()

R.open()
S.open()
r = R.getNext()

• getNext()
while True:

s = S.getNext()
if s is null: # no more tuple from S 

S.close() # reopen S
S.open()
s = S.getNext()
if s is null: # S is empty!

return null
r = R.getNext() # move on to next r
if r is null: # no more tuple from R

return null
if joins(r, s):

return concat(r, s)

• close()
R.close()
S.close()

12

NESTED-LOOP-JOIN

R S

Is this tuple-based or 
block-based nested-loop join?



11/17/16

5

An iterator for 2-pass merge sort
• open()

• Allocate a number of memory blocks for sorting
• Call open() on child iterator

• getNext()
• If called for the first time

• Call getNext() on child to fill all blocks, sort the tuples, and 
output a run

• Repeat until getNext() on child returns null
• Read one block from each run into memory, and initialize pointers 

to point to the beginning tuple of each block
• Return the smallest tuple and advance the corresponding 

pointer; if a block is exhausted bring in the next block in the 
same run

• close()
• Call close() on child
• Deallocate sorting memory and delete temporary runs

13

Blocking vs. non-blocking iterators

• A blocking iterator must call getNext()
exhaustively (or nearly exhaustively) on its children 
before returning its first output tuple
• Examples: sort, aggregation

• A non-blocking iterator expects to make only a few 
getNext() calls on its children before returning 
its first (or next) output tuple
• Examples:

14

Execution of an iterator tree

• Call root.open()
• Call root.getNext() repeatedly until 

it returns null
• Call root.close()

FRequests go down the tree
FIntermediate result tuples go up the tree
FNo intermediate files are needed
• But maybe useful if

15


