Query Processing:
A Systems View

Introduction to Databases
CompSci 316 Fall 2016

E. DUKE
COMPUTER SCIENCE

11/17/16

Announcements (Thu., Nov. 17)

due on 12/01 (in two weeks)

A query’s trip through the DBMS

SELECT name, uid
SQL ery FROM Member, Group
WHERE Member.gid =
<QuFry> Group.gid;
SSFEW2
<select-list> I<Where—cond> Parsg tree
/ <f9m-&t> AN
<ta|ble> <tal|)le> 7;[name,u|_d

Member Group Logicg/ plan tIT ‘Member.gid=Group.gid
X
. N
PROJEICT (name, gid) Meﬁber Group
MERGE-JOIN (gid) Physiggl plan

Ve \
SOP\T|(gld) SCAN (Group)

SCAN (Member) Result

Parsing and validation

* Detect and reject errors

* Detect and reject errors
* Nonexistent tables/views/columns?
* Insufficient access privileges?
« Type mismatches?
« Examples: AVG(name), name + pop, User UNION Member
* Also
* Expand *
« Expand view definitions
* Information required for semantic checking is found in
(which contains all schema information)

11/17/16

Logical plan

* Nodes are operators (often relational
algebra operators)

* There are many equivalent logical plans
7;l'Group,name
quer.name:“Bart” A User.uid = Member.uid A Member.gid = Group.gid
X
x{ G\"OUP TCGrou
PR \ p.name
User Member M Member.gid = Group.gid

N
Group

DX yser.uid= Member.uid

N
Member

(I)_name = “Bart”
User

Physical (execution) plan

* A complex query may involve multiple tables and
various query processing algorithms
* E.g., table scan, index nested-loop join, sort-merge join,
hash-based duplicate elimination...
A for a query tells the DBMS query
processor how to execute the query
* Atree of
* Each operator implements a query processing algorithm
* Each operator accepts a number of input tables/streams
and produces a single output table/stream

Examples of physical plans

SELECT Group.name

FROM User, Member, Group

WHERE User.name = 'Bart'

AND User.uid = Member.uid AND Member.gid = Group.gid;

PROJECT (Group.name) PROJECT (Group.name)
1
INDEX-NESTEDLQOP-JOIN (gid) MERGE-JOIN (gid)
N
Index on Group(gid) SORygid) SCAN (Group)

INDEX-NESTED-LOOP-JOIN (uid
N (uid) MERGEJOIN (yid)

SORT (uid)
SCAN (Member)

Index on Member(uid)
INDEX-SCAN (name = “Bart”) FILTER (name = “Bart”)

1 1
Index on User(name) SCAN (User)
* Many physical plans for a single query

* Equivalent results, but different costs and assumptions!
DBMS query optimizer picks the “best” possible physical plan

11/17/16

Physical plan execution

* How are intermediate results passed from child
operators to parent operators?

* Temporary files
« Compute the tree bottom-up
 Children write intermediate results to temporary files
« Parents read temporary files

* Iterators
* Do not materialize intermediate results
 Children pipeline their results to parents

http://www. dreamstime.con/royalty-f i —pipeli 25917236

Iterator interface

* Every physical operator maintains its own
execution state and implements the following
methods:

: Initialize state and get ready for processing
: Return the next tuple in the result (or a
null pointer if there are no more tuples); adjust state to
allow subsequent tuples to be obtained
: Clean up

11/17/16

An iterator for table scan

* State: a block of memory for buffering input R;
a pointer to a tuple within the block

: allocate a block of memory

* If no block of R has been read yet, read the first block
from the disk and return the first tuple in the block
« Ornullif R is empty
* If there is no more tuple left in the current block, read
the next block of R from the disk and return the first
tuple in the block
* Ornullif there are no more blocks in R
* Otherwise, return the next tuple in the memory block

: deallocate the block of memory

An iterator for nested-loop join

: An iterator for the left subtree NESTED-LOQP-JOIN
: An iterator for the right subtree

Sopent) A
S.open()

T = R.getNext()

while True:
=S, tNext
357518 RN} no more tuple fror
S.close() pen S
S.open()
=S, tNext
$e7sS 1B RO
return null

if joins(r, s):
return concat(r, s)

R.close()
S.close()

An iterator for 2-pass merge sort

Allocate a number of memory blocks for sorting
Call open() on child iterator

If called for the first time
« Call getNext () on child to fill all blocks, sort the tuples, and
output arun
* Repeat until getNext () on child returns null
« Read one block from each run into memory, and initialize pointers
to point to the beginning tuple of each block
Return the smallest tuple and advance the corres?ondinﬁ1
pointer; if a block is exhausted bring in the next block in the
same run

Call close () on child
Deallocate sorting memory and delete temporary runs

11/17/16

Blocking vs. non-blocking iterators

*A iterator must call getNext ()
exhaustively (or nearly exhaustively) on its children
before returning its first output tuple

* Examples: sort, aggregation

A iterator expects to make only a few
getNext () calls onits children before returning
its first (or next) output tuple

* Examples:

Execution of an iterator tree

e Call

* Call repeatedly until
it returns null

e Call

Requests go down the tree
& |ntermediate result tuples go up the tree

% No intermediate files are needed
* But maybe useful if

