Query Optimization
Introduction to Databases
CompSci 316 Fall 2016

Announcements (Tue., Nov. 22)

- Homework #4 next Thursday (12/01)
- Project milestone #2 feedback emailed
- Project demos 12/8-12/15
 - Sign-ups to begin next week

Query optimization

- One logical plan → “best” physical plan
- Questions
 - How to enumerate possible plans
 - How to estimate costs
 - How to pick the “best” one
- Often the goal is not getting the optimum plan, but instead avoiding the horrible ones

Any of these will do

1 second 1 minute 1 hour
Plan enumeration in relational algebra

- Apply relational algebra equivalences
- Join reordering: \times and \Join are associative and commutative (except column ordering, but that is unimportant)

\[
\begin{align*}
R \bowtie S &= T \\
S \bowtie R &= T \\
R \bowtie T &= T \\
\ldots
\end{align*}
\]

More relational algebra equivalences

- Convert $\sigma_p \times$ to/from \bowtie: $\sigma_p (R \times S) = R \bowtie S$
- Merge/split σ's: $\sigma_{p_1} (\sigma_{p_2} R) = \sigma_{p_1 \land p_2} R$
- Merge/split π's: $\pi_{L_1} (\pi_{L_2} R) = \pi_{L_1 \land L_2} R$, where $L_1 \subseteq L_2$
- Push down/pull up σ: $\sigma_{p \land p'} (R \bowtie S) = \sigma_{p \land p'} (\sigma_p R \bowtie \sigma_{p'} S)$, where
 - p is a predicate involving only R columns
 - p' is a predicate involving only S columns
 - p and p' are predicates involving both R and S columns
- Push down π: $\pi_{L_1} (\pi_{L_2} R) = \pi_{L_1 \land L_2} (\pi_{p_1} (\pi_{p_2} R))$, where
 - L is the set of columns referenced by p that are not in L
- Many more (seemingly trivial) equivalences...
- Can be systematically used to transform a plan to new ones

Relational query rewrite example

- Push down σ:
- Convert $\sigma_p \times$ to \bowtie
Heuristics-based query optimization

• Start with a logical plan
• Push selections/projections down as much as possible
 • Why?
 • Why not?
• Join smaller relations first, and avoid cross product
 • Why?
 • Why not?
• Convert the transformed logical plan to a physical plan (by choosing appropriate physical operators)

SQL query rewrite

• More complicated—subqueries and views divide a query into nested “blocks”
 • Processing each block separately forces particular join methods and join order
 • Even if the plan is optimal for each block, it may not be optimal for the entire query
• Unnest query: convert subqueries/views to joins
 • We can just deal with select-project-join queries
 • Where the clean rules of relational algebra apply

SQL query rewrite example

• SELECT name
 FROM User
 WHERE uid = ANY (SELECT uid FROM Member);
• SELECT name
 FROM User, Member
 WHERE User.uid = Member.uid;
 • Wrong
• SELECT name
 FROM (SELECT DISTINCT User.uid, name
 FROM User, Member
 WHERE User.uid = Member.uid);
 • Right—assuming User.uid is a key
Dealing with correlated subqueries

• SELECT gid FROM Group
 WHERE name LIKE 'Springfield'
 AND min_size > (SELECT COUNT(*) FROM Member
 WHERE Member.gid = Group.gid);

• SELECT gid
 FROM Group, (SELECT gid, COUNT(*) AS cnt
 FROM Member GROUP BY gid) t
 WHERE t.gid = Group.gid AND min_size > t.cnt
 AND name LIKE 'Springfield';
 • New subquery is inefficient (it computes the size for every group)

“Magic” decorrelation

• SELECT gid FROM Group
 WHERE name LIKE 'Springfield'
 AND min_size > (SELECT COUNT(*) FROM Member
 WHERE Member.gid = Group.gid);

• WITH Supp_Group AS (SELECT * FROM Group WHERE name LIKE 'Springfield'),
 Magic AS (SELECT DISTINCT gid FROM Supp_Group),
 DS AS (SELECT DISTINCT gid FROM Supp_Group)
 ((SELECT Group.gid, COUNT(*) AS cnt
 FROM Magic, Member WHERE Magic.gid = Member.gid
 GROUP BY Member.gid) UNION
 (SELECT gid, 0 AS cnt
 FROM Magic WHERE gid NOT IN (SELECT gid FROM Member)))
 SELECT Supp_Group.gid FROM Supp_Group, DS
 WHERE Supp_Group.gid = DS.gid
 AND min_size > DS.cnt;

Heuristics- vs. cost-based optimization

• Heuristics-based optimization
 • Apply heuristics to rewrite plans into cheaper ones

• Cost-based optimization
 • Rewrite logical plan to combine “blocks” as much as possible
 • Optimize query block by block
 • Enumerate logical plans (already covered)
 • Estimate the cost of plans
 • Pick a plan with acceptable cost
 • Focus: select-project-join blocks
Cost estimation

Physical plan example:

- We have: cost estimation for each operator
 - Example: \(\text{SORT}(\text{gid}) \) takes \(O(B(\text{input}) \times \log B(\text{input})) \)
 - But what is \(B(\text{input}) \)?

- We need: size of intermediate results

Cardinality estimation

Selections with equality predicates

- \(Q: \sigma_{A=v} R \)
 - Suppose the following information is available
 - Size of \(R: |R| \)
 - Number of distinct \(A \) values in \(R: |\pi_A R| \)
 - Assumptions
 - Values of \(A \) are uniformly distributed in \(R \)
 - Values of \(v \) in \(Q \) are uniformly distributed over all \(R.A \) values
 - \(|Q| \approx |R|/|\pi_A R| \)
 - Selectivity factor of \((A = v) \) is \(1/|\pi_A R| \)
Conjunctive predicates

- $Q: \sigma_{A=1 \land B=\mu} R$
- Additional assumptions
 - $(A = 1)$ and $(B = \mu)$ are independent
 - Counterexample: major and advisor
 - No “over”-selection
 - Counterexample: A is the key
- $|Q| \approx \frac{|R|}{|P \cap R|}$
 - Reduce total size by all selectivity factors

Negated and disjunctive predicates

- $Q: \sigma_{A=\mu} R$
 - $|Q| \approx |R| \cdot \left(1 - \frac{1}{|P \cap R|}\right)$
 - Selectivity factor of $\neg p$ is $(1 - \text{selectivity factor of } p)$
- $Q: \sigma_{A=\mu \lor B=\nu} R$
 - $|Q| \approx |R| \cdot \left(\frac{1}{|P \cap R|} + \frac{1}{|P \cap R|} \right)^2$
 - No! Tuples satisfying $(A = \mu)$ and $(B = \nu)$ are counted twice
 - $|Q| \approx |R| \cdot \left(\frac{1}{|P \cap R|} + \frac{1}{|P \cap R|} \right)^2$
 - Inclusion-exclusion principle

Range predicates

- $Q: \sigma_{A=\mu} R$
 - Not enough information!
 - Just pick, say, $|Q| = |R| \cdot \frac{1}{3}$
 - With more information
 - Largest $R.A$ value: $\text{high}(R.A)$
 - Smallest $R.A$ value: $\text{low}(R.A)$
 - $|Q| \approx |R| \frac{1}{\text{high}(R.A) - \text{low}(R.A)}$
 - In practice: sometimes the second highest and lowest are used instead
Two-way equi-join

- \(Q: R(A, B) \bowtie S(A, C) \)
- Assumption: containment of value sets
 - Every tuple in the “smaller” relation (one with fewer distinct values for the join attribute) joins with some tuple in the other relation
 - That is, if \(|\pi_A R| \leq |\pi_A S| \) then \(\pi_A R \subseteq \pi_A S \)
 - Certainly not true in general
 - But holds in the common case of foreign key joins

\[|Q| \approx \frac{|R| \cdot |S|}{\max(|\pi_A R|, |\pi_A S|)} \]
- Selectivity factor of \(R.A = S.A \) is \(\frac{1}{\max(|\pi_A R|, |\pi_A S|)} \)

Multiway equi-join

- \(Q: R(A, B) \bowtie S(B, C) \bowtie T(C, D) \)
- What is the number of distinct \(C \) values in the join of \(R \) and \(S \)?
- Assumption: preservation of value sets
 - A non-join attribute does not lose values from its set of possible values
 - That is, if \(A \) is in \(R \) but not \(S \), then \(\pi_A (R \pitchfork S) = \pi_A R \)
 - Certainly not true in general
 - But holds in the common case of foreign key joins (for value sets from the referencing table)

Multiway equi-join (cont’d)

- \(Q: R(A, B) \bowtie S(B, C) \bowtie T(C, D) \)
- Start with the product of relation sizes
 - \(|R| \cdot |S| \cdot |T| \)
- Reduce the total size by the selectivity factor of each join predicate
 - \(R \bowtie S: \frac{1}{\max(|\pi_B R|, |\pi_B S|)} \)
 - \(S \bowtie T: \frac{1}{\max(|\pi_C S|, |\pi_C T|)} \)
 - \(|Q| \approx \frac{1}{\max(|\pi_B R|, |\pi_B S|, |\pi_C S|, |\pi_C T|)} \)
Cost estimation: summary

- Using similar ideas, we can estimate the size of projection, duplicate elimination, union, difference, aggregation (with grouping)
- Lots of assumptions and very rough estimation
 - Accurate estimate is not needed
 - Maybe okay if we overestimate or underestimate consistently
 - May lead to very nasty optimizer “hints”
  ```sql
  SELECT * FROM User WHERE pop > 0.9;
  SELECT * FROM User WHERE pop > 0.9 AND pop > 0.9;
  ```
- Not covered: better estimation using histograms

Search strategy

Search space

- Huge!
- “Bushy” plan example:

 - Just considering different join orders, there are \(\binom{n - 2}{n - 3} \) bushy plans for \(R_1 \bowtie \cdots \bowtie R_n \)
 - 30240 for \(n = 6 \)
- And there are more if we consider:
 - Multiway joins
 - Different join methods
 - Placement of selection and projection operators
Left-deep plans

- Heuristic: consider only “left-deep” plans, in which only the left child can be a join
 - Tend to be better than plans of other shapes, because many join algorithms scan inner (right) relation multiple times—you will not want it to be a complex subtree
 - How many left-deep plans are there for $R_1 \bowtie \cdots \bowtie R_n$?

A greedy algorithm

- S_1, \ldots, S_n
 - Say selections have been pushed down; i.e., $S_i = \sigma_{R_i}$
 - Start with the pair S_j, S_i with the smallest estimated size for $S_j \bowtie S_i$
 - Repeat until no relation is left:
 - Pick S_k from the remaining relations such that the join of S_k and the current result yields an intermediate result of the smallest size
- Pick most efficient join method
- Minimize expected size
- Remaining relations to be joined

A dynamic programming approach

- Generate optimal plans bottom-up
 - Pass 1: Find the best single-table plans (for each table)
 - Pass 2: Find the best two-table plans (for each pair of tables) by combining best single-table plans
 - ...
 - Pass k: Find the best k-table plans (for each combination of k tables) by combining two smaller best plans found in previous passes
 - ...
- Rationale: Any subplan of an optimal plan must also be optimal (otherwise, just replace the subplan to get a better overall plan)
 - Well, not quite...
The need for “interesting order”

- Example: $R(A, B) \bowtie S(A, C) \bowtie T(A, D)$
- Best plan for $R \bowtie S$: hash join (beats sort-merge join)
- Best overall plan: sort-merge join R and S, and then sort-merge join with T
 - Subplan of the optimal plan is not optimal!
- Why?
 - The result of the sort-merge join of R and S is sorted on A
 - This is an interesting order that can be exploited by later processing (e.g., join, dup elimination, GROUP BY, ORDER BY, etc.)!

Dealing with interesting orders

When picking the best plan
- Comparing their costs is not enough
 - Plans are not totally ordered by cost anymore
- Comparing interesting orders is also needed
 - Plans are now partially ordered
 - Plan X is better than plan Y if
 - Cost of X is lower than Y, and
 - Interesting orders produced by X “subsume” those produced by Y
- Need to keep a set of optimal plans for joining every combination of k tables
 - At most one for each interesting order

Summary

- Relational algebra equivalence
- SQL rewrite tricks
- Heuristics-based optimization
- Cost-based optimization
 - Need statistics to estimate sizes of intermediate results
 - Greedy approach
 - Dynamic programming approach