
12/8/16

1

Data Warehousing
Introduction to Databases

CompSci 316 Fall 2016

Announcements (Thu., Dec. 8)

• Homework #4 last Gradiance problem due today
• Sample solution to be posted by this weekend

• Project demos to start tomorrow
• Check your email for schedule
• Submit report/code before demo (you have until next

Thursday to update it)

• Final exam Thur. Dec. 15 7-10pm
• Different room: LSRC B101
• Open-book, open-notes
• Comprehensive, but with strong emphasis on the

second half of the course
• Sample final + solution posted on Sakai

2

Data integration

• Data resides in many distributed, heterogeneous
OLTP (On-Line Transaction Processing) sources
• Sales, inventory, customer, …
• NC branch, NY branch, CA branch, …

• Need to support OLAP (On-Line Analytical
Processing) over an integrated view of the data
• Possible approaches to integration
• Eager: integrate in advance and store the integrated

data at a central repository called the data warehouse
• Lazy: integrate on demand; process queries over

distributed sources—mediated or federated systems

3

12/8/16

2

OLTP versus OLAP

OLTP
• Mostly updates
• Short, simple transactions
• Clerical users
• Goal: transaction throughput

4

OLAP
• Mostly reads
• Long, complex queries
• Analysts, decision makers
• Goal: fast queries

Implications on database design and optimization?
OLAP databases do not care much about

redundancy
§ “Denormalize” tables
§ Many, many indexes
§ Precomputed query results

Eager versus lazy integration
Eager (warehousing)
• In advance: before queries
• Copy data from sources
☞Answer could be stale
☞Need to maintain consistency
☞Query processing is local to

the warehouse
• Faster
• Can operate when sources are

unavailable

5

Lazy
• On demand: at query time
• Leave data at sources
☞Answer is more up-to-date
☞No need to maintain consistency
☞Sources participate in query

processing
• Slower
• Interferes with local processing
• Still has consistency issues

Maintaining a data warehouse
• The “ETL” process

• Extract relevant data and/or changes from sources
• Transform data to match the warehouse schema
• Load/integrate data/changes into the warehouse

• Approaches
• Recomputation

• Easy to implement; just take periodic dumps of the sources, say,
every night

• What if there is no “night,” e.g., a global organization?
• What if recomputation takes more than a day?

• Incremental maintenance
• Compute and apply only incremental changes
• Fast if changes are small
• Not easy to do for complicated transformations
• Need to detect incremental changes at the sources

6

12/8/16

3

“Star” schema of a data warehouse
7

• Small

• Updated infrequently

Dimension table
Dimension table

Dimension table

Fact table

Product
Store

Sale

Customer

OID Date CID PID SID qty price

100 08/23/2015 c3 p1 s1 1 12

102 09/12/2015 c3 p2 s1 2 17

105 09/24/2015 c5 p1 s3 5 13

… … … … … … …

CID name address city

c3 Amy 100 Main St. Durham

c4 Ben 102 Main St. Durham

c5 Coy 800 Eighth St. Durham

… … … …

PID name cost

p1 beer 10

p2 diaper 16

… … …

SID city

s1 Durham

s2 Chapel Hill

s3 RTP

… …

• Big

• Constantly growing

• Stores measures (often
aggregated in queries)

Data cube
8

Customer

Store

Product

“ALL”

p1

p2

s1

s2

s3

c3 c4 c5

(c3, p2, s1) = 2

(c5, p1, s3) = 5

Simplified schema: Sale (CID, PID, SID, qty)

(c5, p1, s1) = 3(c3, p1, s1) = 1

Completing the cube—plane
9

Customer

Store

Product

(ALL, p1, s3) = 5
(ALL, p2, s1) = 2

(ALL, p1, s1) = 4

Total quantity of sales for each product in each store

“ALL”

p1

p2

s1

s2

s3

c3 c4 c5

(c3, p2, s1) = 2

(c5, p1, s3) = 5

(c5, p1, s1) = 3(c3, p1, s1) = 1

SELECT PID, SID, SUM(qty) FROM Sale
GROUP BY PID, SID;

Project all points onto Product-Store plane

12/8/16

4

Completing the cube—axis
10

(ALL, p2, ALL)
= 2

(ALL, p1, ALL)
= 9

(ALL, p1, s3) = 5
(ALL, p2, s1) = 2

(ALL, p1, s1) = 4

Total quantity of sales for each product

“ALL”

p1

p2

s1

s2

s3

c3 c4 c5

(c3, p2, s1) = 2

(c5, p1, s3) = 5

(c5, p1, s1) = 3(c3, p1, s1) = 1

SELECT PID, SUM(qty) FROM Sale GROUP BY PID;

Further project points onto Product axis

Customer

Store

Product

Completing the cube—origin
11

(ALL, p2, ALL)
= 2

(ALL, p1, ALL)
= 9

(ALL, p1, s3) = 5
(ALL, p2, s1) = 2

(ALL, p1, s1) = 4

“ALL”

p1

p2

s1

s2

s3

c3 c4 c5

(c3, p2, s1) = 2

(c5, p1, s3) = 5

(c5, p1, s1) = 3(c3, p1, s1) = 1

SELECT SUM(qty) FROM Sale;

Customer

Store

Product

Total quantity of sales

Further project points onto the origin

(ALL, ALL, ALL) = 11

CUBE operator
• Sale (CID, PID, SID, qty)

• Proposed SQL extension:
SELECT SUM(qty) FROM Sale
GROUP BY CUBE CID, PID, SID;

• Output contains:
• Normal groups produced by GROUP BY

• (c1, p1, s1, sum), (c1, p2, s3, sum), etc.
• Groups with one or more ALL’s

• (ALL, p1, s1, sum), (c2, ALL, ALL, sum), (ALL, ALL, ALL, sum), etc.

• Can you write a CUBE query using only GROUP BY’s?

Gray et al., “Data Cube: A Relational Aggregation Operator
Generalizing Group-By, Cross-Tab, and Sub-Total.” ICDE 1996

12

12/8/16

5

Aggregation lattice
13

GROUP BY
CID, PID, SID

GROUP BY ∅

GROUP BY
CID, PID

GROUP BY
CID, SID

GROUP BY
PID, SID

GROUP BY
CID

GROUP BY
PID

GROUP BY
SID

A parent can be
computed from any child

Roll up

Drill down

Materialized views

• Computing GROUP BY and CUBE aggregates is
expensive
• OLAP queries perform these operations over and

over again

FIdea: precompute and store the aggregates as
materialized views
• Maintained automatically as base data changes
• No. 1 user-requested feature in PostgreSQL!

14

Selecting views to materialize

• Factors in deciding what to materialize
• What is its storage cost?
• What is its update cost?
• Which queries can benefit from it?
• How much can a query benefit from it?

• Example
• GROUP BY ∅ is small, but not useful to most queries
• GROUP BY CID, PID, SID is useful to any query, but too

large to be beneficial

15

12/8/16

6

Other OLAP extensions

• Besides extended grouping capabilities (e.g., CUBE),
window operations have also been added to SQL
• A “window” specifies an ordered list of rows

related to the “current row”
• A window function computes a value from this list

and the “current row”
• Standard aggregates: COUNT, SUM, AVG, MIN, MAX
• New functions: RANK, PERCENT_RANK, LAG, LEAD, …

16

RANK window function example
17

Apply WINDOW after processing
FROM, WHERE, GROUP BY, HAVING
• PARTITION defines the related

set and ORDER BY orders it

sid | pid | cid | qty
------------+------------+------------+-----
Durham | beer | Alice | 10
Durham | beer | Bob | 2
Durham | chips | Bob | 3
Durham | diaper | Alice | 5
Raleigh | beer | Alice | 2
Raleigh | diaper | Bob | 100

SELECT SID, PID, SUM(qty),
RANK() OVER w

FROM Sale GROUP BY SID, PID
WINDOW w AS
(PARTITION BY SID
ORDER BY SUM(qty) DESC);

sid | pid | cid | qty
------------+------------+------------+-----
Durham | beer | Alice | 10

| | Bob | 2
Durham | chips | Bob | 3
Durham | diaper | Alice | 5
Raleigh | beer | Alice | 2
Raleigh | diaper | Bob | 100

Durham | beer | Alice | 10
| | Bob | 2

GROUP BY

Durham | beer | Alice | 10
| | Bob | 2

Durham | diaper | Alice | 5

Durham | chips | Bob | 3

E.g., for the following “row,” the related list is:

RANK example (cont’d)
18

SELECT SID, PID, SUM(qty),
RANK() OVER w

FROM Sale GROUP BY SID, PID
WINDOW w AS
(PARTITION BY SID
ORDER BY SUM(qty) DESC);

sid | pid | cid | qty
------------+------------+------------+-----
Durham | beer | Alice | 10

| | Bob | 2
Durham | chips | Bob | 3
Durham | diaper | Alice | 5
Raleigh | beer | Alice | 2
Raleigh | diaper | Bob | 100

Durham | beer | Alice | 10
| | Bob | 2

Durham | beer | Alice | 10
| | Bob | 2

Durham | diaper | Alice | 5

Durham | chips | Bob | 3

E.g., for the following “row,” the related list is:

Then, for each “row” and its
related list, evaluate SELECT and
return:

sid | pid | sum | rank
------------+------------+-----+------
Durham | beer | 12 | 1
Durham | diaper | 5 | 2
Durham | chips | 3 | 3
Raleigh | diaper | 100 | 1
Raleigh | beer | 2 | 2

12/8/16

7

Multiple windows
19

sid | pid | cid | qty
------------+------------+------------+-----
Durham | beer | Alice | 10

| | Bob | 2
Durham | chips | Bob | 3
Durham | diaper | Alice | 5
Raleigh | beer | Alice | 2
Raleigh | diaper | Bob | 100

SELECT SID, PID, SUM(qty),
RANK() OVER w,
RANK() OVER w1 AS rank1

FROM Sale GROUP BY SID, PID
WINDOW w AS
(PARTITION BY SID
ORDER BY SUM(qty) DESC),

w1 AS
(ORDER BY SUM(qty) DESC)

ORDER BY SID, rank;

sid | pid | sum | rank | rank1
------------+------------+-----+------+-------
Durham | beer | 12 | 1 | 2
Durham | diaper | 5 | 2 | 3
Durham | chips | 3 | 3 | 4
Raleigh | diaper | 100 | 1 | 1
Raleigh | beer | 2 | 2 | 5

So rank1 is the “global” rank:

No PARTITIONmeans all
“rows” are related to the
current one

Summary

• Eagerly integrate data from operational sources
and store a redundant copy to support OLAP
• OLAP vs. OLTP: different workload → different

degree of redundancy
• SQL extensions: grouping and windowing

20

