Data Warehousing

Introduction to Databases
CompSci 316 Fall 2016

E. DUKE
COMPUTER SCIENCE

12/8/16

Announcements (Thu., Dec. 8)

last Gradiance problem due today
* Sample solution to be posted by this weekend

to start tomorrow
* Check your email for schedule
(you have until next
Thursday to update it)
Thur. Dec. 15 7-10pm

* Different room: LSRC B101
* Open-book, open-notes
* Comprehensive, but with strong emphasis on the

second half of the course
* Sample final + solution posted on Sakai

Data integration

* Data resides in many distributed, heterogeneous
(On-Line Transaction Processing) sources
* Sales, inventory, customer, ...
* NCbranch, NY branch, CA branch, ...

* Need to support (On-Line Analytical
Processing) over an integrated view of the data

* Possible approaches to integration
:integrate in advance and store the integrated
data at a central repository called the
: integrate on demand; process queries over
distributed sources— or systems

OLTP versus OLAP

OLTP OLAP

* Mostly updates * Mostly reads

* Short, simple transactions * Long, complex queries

* Clerical users * Analysts, decision makers

* Goal: transaction throughput Goal: fast queries

Implications on database design and optimization?
OLAP databases do not care much about
redundancy
= “Denormalize” tables
= Many, many indexes
= Precomputed query results

12/8/16

Eager versus lazy integration

Eager (warehousing) Lazy

* In advance: before queries * On demand: at query time
 Copy data from sources * Leave data at sources
@Answer could be stale @Answer is more up-to-date

@Need to maintain consistency®No need to maintain consistency
@Query processing is local to ©@Sources participate in query

the warehouse processing
* Faster * Slower
* Can operate when sources are * Interferes with local processing
unavailable « Still has consistency issues

Maintaining a data warehouse

* The “ETL” process
relevant data and/or changes from sources
data to match the warehouse schema
[integrate data/changes into the warehouse

* Approaches

Easy to implement; just take periodic dumps of the sources, say,
every night

What if there is no “night,” e.g., a global organization?

What if recomputation takes more than a day?

.

Compute and apply only incremental changes

Fast if changes are small

Not easy to do for complicated transformations
Need to detect incremental changes at the sources

.

“Star” schema of a data warehouse

Dimension table

Dimension table Store

Productiprrrr S| ournam
beer |10 s2 | Chapel Hill
p2 | diaper |16 s3 | RTP
< — A
Sale [GE 5 b PID SID gty price
100 |08/232015 |3 |p1 st |1 |12 .
Fact table
102 [ogh2f2015 |3 |p2 [st |2 |7 i
* Big
105 | 09/24/2015 [c5 |p1 |s3 |5 |13
« Constantly growing

Ak . Stores measures (ofte
Customer [P R i aggregated in queries)

& ||Miy || TE0MEnSs || BuiEm Dimension table

cq Ben | 102 Main St. Durham
¢ Small

<5 Coy 800 Eighth St. | Durham

* Updated infrequently

12/8/16

Data cube

Simplified schema: Sale (CID, PID, SID, gty)
Productp

» Customer

“ALL” a3 4 <5

Completing the cube—plane

Total quantity of sales for each product in each store
SELECT PID, SID, SUM(qty) FROM Sale
ProductA crour BY PID, SID;

(¢c5,p1,53)=5
(AL pgs3)=5 (c5,p1,53)=5

(ALL, Ez s1)=2 (c3,p2,s1) =2 =
T T Store
P2 '(.ALL p:w 51")': 4
’:j @ l.pLs)=1__g(cs p1,s1)=3

'
P Project all points onto Product-Store plane

» Customer

“ALL” a3 4 <5

Completing the cube—axis

Total quantity of sales for each product
SELECT PID, SUM(qty) FROM Sale GROUP BY PID;

Product,
(ALL, p4s3)=5
(ALL, %z, s1) =2 % ° °

(ALL, p2, ALL) Store

=2 pRALLpi =4 S

I/ z]
S

(ALL, p1, ALL))

=9 P sq

» Customer
“ALL” a3 c4 c5

12/8/16

Completing the cube—origin

Total quantity of sales
SELECT SUM(qty) FROM Sale;

Producty
(ALL, pys3) =5
(ALL, 9:2,51):2 % 2 d

(ALL, p2, ALL) Store

=2 PIALL, p1) =4 S

v 2z o]
S

(ALL, p1, ALL))

=9 P st

N o » Customer
ALL 3 c4 c5

(ALL, ALL, ALL) = 11

CUBE operator

« Sale (CID, PID, SID, gty)

* Proposed SQL extension:
SELECT SUM(qty) FROM Sale
GROUP BY Cip, PID, SID;
* Output contains:
* Normal groups produced by GROUP BY
* (c1, p1, s1, sum), (c1, p2, s3, sum), etc.
* Groups with one or more ALL’s
* (ALL, p1, s1, sum), (c2, ALL, ALL, sum), (ALL, ALL, ALL, sum), etc.

» Can you write a CUBE query using only GROUP BY’ s?

Gray et al., “Data Cube: A Relational Aggregation Operator
Generalizing Group-By, Cross-Tab, and Sub-Total.” ICDE 1996

Aggregation lattice

GROUP BY
Roll up
GROUP BY GROUP BY GROUP BY
GROUP BY GROUP BY GROUP BY
Drill down
GROUP BY A parent can be

CID, PID, SID- computed from any child

12/8/16

Materialized views

* Computing GROUP BY and CUBE aggregates is
expensive

* OLAP queries perform these operations over and
over again

@ |dea: precompute and store the aggregates as

* Maintained automatically as base data changes
* No. 1 user-requested feature in PostgreSQL!

Selecting views to materialize

* Factors in deciding what to materialize
* What is its storage cost?
* What is its update cost?
* Which queries can benefit from it?
* How much can a query benefit from it?

* Example
* GROUP BY ¢ is small, but not useful to most queries
* GROUP BY is useful to any query, but too

large to be beneficial

Other OLAP extensions

* Besides extended groupi

window operations have
* A “window” specifies an

ng capabilities (e.g., CUBE),
also been added to SQL
ordered list of rows

related to the “current row”

* A window function computes a value from this list

and the “current row”

* Standard aggregates: COUNT, SUM, AVG, MIN, MAX
* New functions: RANK, PERCENT RANK, LAG, LEAD, ...

12/8/16

RANK window function example

SELECT SID, PID, SUM(qty),
RANK() OVER w

FROM Sale GROUP BY SID, PID

WINDOW w AS

(PARTITION BY SID

ORDER BY SUM(qty) DESC);

sid | pid | cid | qty
. . i
Durham beer Alice 10
Durham beer Bob 2
Durham chips Bob 3
Durham diaper Alice 5
Raleigh beer | Alice | 2
Raleigh diaper | Bob | 100
{1 Grour BY
sid I pid |
Durham beer ; 14
Durham hip: !
Durham diaper. 1 ic
Raleigh beer. ! ice
i diaper. L

Apply WINDOW after processing
FROM, WHERE, GROUP BY, HAVING

* PARTITION defines the related

set and ORDER BY orders it

E.g., for the following “row,”

the related list is:

Durham | beer | Alice 10 Durham beer Alice 10)
| Bo 2 Bob 2

Durham diaper Alice B

Durham chips Bob 3

sid |

Durham

Durham
Durham
Raleigh

RANK example (cont’d)

SELECT SID, PID, SUM(qty),
RANK() OVER w

FROM Sale GROUP BY SID, PID

WINDOW w AS

(PARTITION BY SID

ORDER BY SUM(qty) DESC);

the related list is:

E.g., for the following “row,”

Durham | beer | Alice 10 Durham beer Alice 10|
| | Bob Bob 2
Durham diaper Alice 5
«) . Durham chips Bob 3
Then, for each “row” and its
related list, evaluate SELECT and
return:
sid | pid | sum | rank
............ S S S
Durham | beer | 12| 1
Durham | diaper | 5 2
Durham | chips | 3 3
Raleigh | diaper | 100 | 1
Raleigh | beer | 2 2

Multiple windows

sid | pid ic qt
Durham beer
Durham hip:
Durham diaper
Raleigh beer. Alice
i diaper
No PARTITION means all

“rows” are related to the
current one

So rankl is the “global” rank:

SELECT SID, PID, SUM(qty),

RANK() OVER w,

RANK() OVER wl AS rankl
FROM Sale GROUP BY SID, PID
WINDOW w AS

(PARTITION BY SID

ORDER BY SUM(qty) DESC),
wl AS

(ORDER BY SUM(qty) DESC)
ORDER BY SID, rank;

12/8/16

sid | pid | sum | rank | rankl
............ S S S
Durham beer | 12 | 1 ‘
Durham diaper 5 2
Durham chips | 3 | 3 ‘
Raleigh diaper 100 1
Raleigh | beer | 2] 2|

Summary

* Eagerly integrate data from operational sources
and store a redundant copy to support OLAP

¢ OLAP vs. OLTP: different workload — different

degree of redundancy

* SQL extensions: grouping and windowing

