
COMPSCI 527 — Homework 6
Due on November 17, 2016

Please refer to homework 1 and the class mechanics web page for homework policies and formatting/submission instructions. The
submission checklist for this assignment is as follows:

hw6.pdf, lineSearch.m, nGradient.m, nHessian.m, camelCost.m, eigenvalues2x2.m.

Keep in mind that your code (or snippets thereof, as requested) must also show up in hw6.pdf .

Function Optimization
We explored several function optimization methods in class, including the following:

• Gradient descent with a step proportional to the gradient magnitude

• Gradient descent with line search

• Newton’s method

We discussed the first method in the context of deep nets (that discussion also included a momentum term, which we set to zero in this
assignment). We saw Newton’s method both in the context of general function optimization and in relation to the Lucas-Kanade tracker.

These methods need first and sometimes second derivatives of the function

f(x) : Rn → R

to be minimized. In other words, the implementation of f must also be able to return the gradient g and Hessian H of f at the current
point x upon request. We consider three options for differentiation in this assignment:

• Exact differentiation is possible when f is known in analytic form, and standard calculus can be used to compute its derivatives.

• Numerical differentiation approximates a derivative with a central finite difference:

∂f

∂xi
≈ f(x+ δei)− f(x− δei)

2δ

where ei is the i-th column of the n× n identity matrix.

• When f is the Sum of Squared Differences (SSD) residual that the Lucas-Kanade method minimizes to track point features
between two images, derivatives of f can be approximated by linearizing one of the images as a function of feature displacement,
and then differentiating the resulting residual function analytically. A further approximation is involved when computing the
Hessian of f , as explained in the notes on point correspondence. Let us call the resulting method Lucas-Kanade differentiation,
even if the general idea is due to Newton and Raphson.

All these methods conform to the general framework implemented in the provided function minimize.m: The function f to be
minimized and some of its derivatives (depending on the optimization method used) are computed at the initial point x = x0, and
then the optimizer makes repeated moves (whose nature depends on the optimization method as well) until either the move fails, or an
undesired point x is reached (as determined by the caller), or one of several possible convergence criteria has been reached.
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Programming Optimization Methods
For generality and flexibility, we use a mild form of object-oriented programming to implement the optimization methods for this
assignment. With this approach, all optimization methods can be implemented with a single function minimize that takes as inputs
information about the cost function and the optimization method to use, in addition to the starting point x0.

Specifically, the function minimize takes a cost, a method, and a starting point x0. It returns the final point x and a state:

function [x, state] = minimize(cost, method, x0)

Input and output variables are described next. While these descriptions are lengthy, files are provided with this assignment that also
show how all these variables and functions are used.

x0 and x: The initial point x0 and final point x are n×1 vectors of reals. Note that minimize computes the point where the minimum
is achieved, not the value of f at the minimum.

cost: The cost variable is not a function, but rather a data structure that has both mandatory and optional fields. The mandatory fields
are described next. You may want to read this description while perusing the provided file ssdCost.m. This file implements a
cost data structure for sum-of-squared-differences.

cost.f is a handle to the user-provided function to be minimized. The corresponding function has header

function point = f(x, cost, order)

The first argument x is the point or array of points on which the function is to be computed. Specifically, the first dimension
of x is equal to n, the dimension of the domain of f . The simplest case occurs when x is n×1 (a column vector). This means
that the caller wants to compute f at a single point, and the output from cost.f is a scalar. When x has more dimensions,
the caller wants to compute f at several points. For instance, x could be a 3× 4× 8 array. In that case, n = 3 and the user is
asking for the values that f achieves at the 4× 8 = 32 points in R3 specified in x. The output from cost.f in this case is
a 4× 8 array. This is an example of a vectorized function, which is particularly convenient when the values of f are needed
on an entire grid of points. During optimization, x is always a single vector. Because of this, it is typically not necessary to
also vectorize the computation of gradients and Hessians. An exception to this occurs in problem 5, where you are asked to
vectorize gradient and Hessian as well.
The second argument to cost.f is the data structure cost itself. Since cost can have any number of optional arguments,
this mechanism allows the user to pass any arguments the function needs to do its job, while keeping the header of the
function fixed.
The argument order is equal to 0 if only the value y = f(x) is needed (possibly vectorized); to 1 if both y and the gradient
g = ∇f(x) of f at x are needed; and to 2 if y, g, and the n× n, symmetric Hessian matrix

H =


∂f2

∂x2
1

· · · ∂f2

∂x1∂xn

...
...

∂f2

∂xn∂x1
· · · ∂f2

∂x2
n


of f at x are all needed. Since the number of outputs from cost.f is variable but we need a fixed header (because
minimize must be able to work with functions and methods of all kinds), the only output argument from f is point, a
data structure with mandatory field point.y and optional fields point.g and point.H (when H is present, so must be
g). So in its fullest form point is a rich description of a point of f , equivalent to its second-order Taylor expansion.

cost.diffMethod is one of the three strings 'exact', 'numerical', or 'Lucas-Kanade' (each spelled exactly like
this) that specifies the desired differentiation method. Not all methods are valid for all cost functions. For instance, exact
differentiation is not available for the sum-of-squared differences cost function.

cost.OK is a handle to a user-provided function with header

function good = OK(cost, method, state)

that examines anything it wants from its inputs and returns true if everything is OK and optimization can proceed (provided
that the minimization method does not itself determine that it is done). The function OK returns false otherwise, in which
case optimization is aborted. The role of this function is to enforce any criteria the caller may want to impose on a solution.
For instance, in point-feature tracking, it is advisable to abort optimization when the current point is too far from x0. For
problems where no such constraints exist, the body of this function would be the single line

good = true;

It is up to OK to print out any diagnostic messages.
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method: This variable specifies the optimization method to use, and has several mandatory fields, in addition to any method-specific
optional fields. Files descentMethod.m and NewtonMethod.m are provided, and you may want to refer to them as you read
the description below. The mandatory fields of method are as follows:

method.name: A string that specifies the name of the method, to be used in plots and figure titles.

method.move: A handle to a function with header

function state = move(cost, method, state)

that specifies how the method moves from the current state to the next state. The input and output state is a state variable
that keeps track of the status and history of optimization and includes a field state.x that specifies the current value of x.
The state structure is described in greater detail later below.

method.order: The order of the method (0, 1, 2) as described under cost.f above.

method.done: A handle to a function that determines if convergence has been achieved. This function is provided for you in
file converged.m.

method.delta, method.epsilon, method.maxMotion, method.maxIteration: Values used by converged.
Please see this function for their meaning. In particular, delta and maxMotion specify a minimum and maximum amount
of change ‖xk − xk−1‖ in the value of x that is needed to continue optimization. Similarly, epsilon specifies a minimum
amount of change |f(xk) − f(xk−1)| required to keep going, and maxIteration specifies the maximum number of
iterations allowed.

method.verbose: true if diagnostic messages are to be printed, false otherwise.

In addition, method may contain whatever additional fields a particular optimization method requires to do its job.

state: The state variable is a data structure that keeps track of both the status and history of optimization. It always has the
following fields:

state.first, state.current, state.previous: These point data structures (pointwas described under cost.f
above) keep track of the initial, current, and previous x and, if applicable, gradient and Hessian.

state.iteration: An integer that specifies the number of the current iteration, starting at 1.

In addition, if the user calls minimize with two output arguments, the state structure also keeps track of optimization history
with the following fields:

state.history: A vector of all point structures traversed during optimization. You will make extensive use of this field in
this assignment.

state.method: A copy of method.name, useful in plots.

state.diffMethod: A copy of cost.diffMethod, useful in plots.

state.version: This field is optional, and is a copy of method.version if the latter field exists. This field is defined in
descentMethod, and is used to keep track of which variant of steepest descent ('alpha step' or 'line search')
is being used. This field is not defined in NewtonMethod.

Line Search

1. The provided file lineSearch.m initializes the bracketing triple for line search. Complete the code in that file as described in the
class notes on optimization. You do not need to optimize by golden search, just implement the basic method on page 5 of the notes. The
optional parameter delta specifies the width c − a of the bracketing triple (a, b, c) below which iterations will stop, and defaults to
10−5.

Hand in your code (both in the PDF file and as a separate MATLAB file). In your PDF file, include only the part of code you wrote,
not the entire function. Then show the results from the following calls:

lineSearch(@(x) sin(x), 0, 1)
lineSearch(@(x) -cos(x), pi/2, sin(pi/2))
lineSearch(@(x) x'*x, [1; 2], [2; 4])
lineSearch(@(x) x'*x, [0; 0], [0; 0])

Make sure the results are correct, or else you’ll be in trouble for later problems.
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Differentiation

2. Use calculus to compute formulas for the gradient g(x) and Hessian H(x) of the function

f(x1, x2) = 2x21 − 1.05x41 +
x61
6

+ x1x2 + x22

where x = [x1, x2]
T .

3. Write a function with header

function g = nGradient(f, x, delta, vars)

that uses central finite differences (defined in the introduction to this assignment) to compute g, a column vector that approximates
the gradient of f at x. The optional parameter δ was defined in the introduction, and is not to be confused with other deltas in this
assignment. The optional parameter vars is a vector of indices that specifies which variables to include in the gradient. If vars is not
specified, it defaults to 1:length(x), and the full gradient is then computed. Otherwise, if vars is a vector [v1, . . . , vk] with k ≤ n,
the output approximates

g =


∂f

∂xv1

...
∂f

∂xvk

 .

The flexibility afforded by vars will be useful later. A template file nGradient.m is provided. It is OK to loop for i between 1 and
the length of vars.

Hand in your code (both in the PDF file and as a separate MATLAB file) and show the result of the call

nGradient(@(x) x'*x, [1;2;3])

Make sure your result is correct, or else you’ll be in trouble for later problems.

4. Write a function with header

function H = nHessian(f, x, delta)

that uses nGradient to compute the Hessian matrix of f at x (a single column vector). The meaning of the parameters is the same
as the correspondingly named parameters in nGradient. Use the minimal number of function evaluations needed, keeping in mind
that the Hessian is a symmetric matrix. It is OK to loop for i between 1 and the length of x. A double loop is not necessary, but will
be tolerated. A template nHessian.m is provided. [Hints: The Hessian is the gradient of the gradient. The MATLAB function triu
might be useful as well.] Hand in your code (both in the PDF file and as a separate MATLAB file) and show the result of the call

nHessian(@(x) x'*x, [1;2;3])

Make sure your result is correct, or else you’ll be in trouble for later problems.

5. The provided file camelCost.m contains a partial implementation of a function with header

function cost = camelCost(diffMethod)

that returns the cost data structure for the function f in problem 2. Complete the implementation of camelCost by replacing the
comments that start with

% Your code here

with appropriate code.
You should compute gradient and Hessian only as dictated by the order argument. That is, compute these quantities only if

requested. You should do so with exact or numerical differentiation depending on the value of diffMethod (no Lucas-Kanade
option, of course).
Vectorization: The computations of point.y, point.g, and point.H must be vectorized for exact differentiation. Specifically, if
the input x to cost.f has size [2 sz], then the outputs satisfy the following size predicates:

all(size(point.y) == sz)
all(size(point.g) == [2 sz])
all(size(point.H) == [2 2 sz])
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For numerical differentiation, only the computation of point.y needs to be vectorized.
Hand in your code (both in the PDF file and as a separate MATLAB file). In your PDF file, include only the part of code you wrote,

not the entire function. Specify what part (see comments in camelCost.m for part numbers) each snippet of code refers to. Then show
a mesh plot of the array ePoint.y resulting from the calls

camelExact = camelCost('exact');
ePoint = camelExact.f(x, camelExact, 2);

(the order parameter is 2 because you will need the Hessian in a later problem). In the snippet above, x is a 2 × 101 × 101 array of
points on a 101× 101 grid of uniformly spaced samples in the square

−2 ≤ x1 ≤ 2 , − 2 ≤ x1 ≤ 2 .

The provided script problem5.m makes x for you. It also makes vectors with x1 and x2, which are useful for plotting. Label the axes
appropriately.

6. Show a plot of the magnitude of the gradient obtained by exact differentiation of the function in problem 2 along the line with
equation x2 = 0 and for x1 between -2 and 2. [Hint: You already have the samples for this plot from the previous problem.] Also show
a separate plot of the difference between the magnitude of the gradient computed on this line by exact and by numerical differentiation.
This difference will be very small but nonzero. Label the axes appropriately. No code needed here.

7. Write a function with header

function lambda = eigenvalues2x2(H)

that takes an arbitrary array H of double numbers with size sz = [2, 2, ...]) and computes an array lambda of size sz(2:end)
that contains the eigenvalues of the 2 × 2 matrices in H. To avoid using for loops over the entries of H, you cannot use the MATLAB
function eig to compute eigenvalues. Instead, your code should use the analytic formula for computing the eigenvalues of a 2 × 2
matrix. [Partial credit if you use eig and loops.]

Hand in your code (both in the PDF file and as a separate MATLAB file). If you did the math in problem 2 correctly, the Hessian
of the function f in problem 2 does not depend on x2. Give a single diagram with two plots showing the maximum and minimum
eigenvalue of that Hessian as a function of x1. Include a legend that identifies which plot is which.

Optimization

8. Use descentMethod, NewtonMethod, and camelCost to find a minimum of the function f in problem 2 by starting at
x0 = [0, 1.5]T and then at x0 = [1, 1.5]T . For each of these starting points, use

• Gradient descent with alpha step

• Gradient descent with line search (you implemented line search in an earlier problem)

• Newton’s method

Use exact differentiation in all cases. You may use values defined in the provided file problem9.m (for the next problem) as parameter
values for the various methods. Set α = 0.1 for the first method.

Do not hand in any code. Instead, make a contour plot of f(x) for x1 and x2 ranging between −2 and 2 (101 samples in each
direction) with the command

contour(x1, x2, ePoint.y, 20, 'k');

where ePoint is what you computed in problem 5. Then hold on to the plot and superimpose plots of the six paths corresponding to
the optimizations described above. Make the six paths distinguishable by using suitable markers (not just color), and add a legend that
describes each path unambiguously and legibly. In the legend or in separate text, also note the number of steps each optimization took.
Make your figure as wide as a whole page, so it can be read easily.

[Hints: if s is the state variable returned as second argument from minimize, then you can extract the path with the command

path = [s.history(:).x];

If s.history has length k, then k − 1 steps were taken.]
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Tracking
The provided file ssdCost.m implements the cost function for sum-of-squared-differences tracking. For completeness, it implements
both numerical differentiation and the Lucas-Kanade method. However, you will only need the Lucas-Kanade version for the problems
in this section.

You can make an SSD cost object by calling

cost = ssdCost(I, J, p0, hWin);

which invokes the Lucas-Kanade method by default. The argument p0 gives the point in I to be tracked, a 2 × 1 vector with the row
and column coordinates (in this order). The argument hWin is half the window size used by the tracker.

The two images I and J provided with this assignment (do load data to retrieve them) are of type single and are slightly
blurred to prevent trouble when differentiating them. These two images are related by an artificial distortion. Specifically, pixel
I(r, c) moves to pixel

J(r + D(r, c, 1), c + D(r, c, 2))

where the array D is provided as well. Thus, D contains the true displacements from I to J. You can use this array to determine how well
the Lucas-Kanade tracker performs.

9. The file problem9 provided with this assignment sets all the necessary parameters and tracks a single point, so you see how to use
the relevant functions. Without changing any of the tracking parameters, track each of the 49 points in the provided array P0 (found in
data.mat). The code in problem9 shows those points superimposed on image I. You will need to loop explicitly over the points
to track each of them. To track a different point you need to either create a different cost object, or set cost.pos to the new point
coordinates.

Give no code for this problem, but provide three figures instead.

• The first figure shows image J. Superimposed on it are the the true tracking results (computed from P0 and D) drawn as small
circles (draw these in a visible color; red works well). Each circle is connected by a line segment to an asterisk that shows the
corresponding tracking result. See the figure made by problem9 for an example. Note, however, that problem9 superimposes
the points on I rather than J.

Most points are tracked to within a pixel or two from the correct results, so their circles and asterisks overlap, but some points are
not tracked as well. [Hint: All the drawing for this figure can be done with the plot command. Use the 'o' marker for circles
and the '*' marker for asterisks.]

• The second figure is a histogram of the magnitudes of the errors you displayed in the first image. Do this by calling

hist(n, 1:16);

where n is a vector with the 49 error magnitudes (the error magnitude is the Euclidean norm of the difference between true and
computed displacement.)

• The third figure shows no image, but only displays the optimization paths traversed by the tracker for the 49 points. The path for
point k should start from P0(:, k), so you will need to compute these paths from P0 and the histories returned by minimize.
Show each path as a black line starting at a cross ('x' marker at P0(:, k) for point k) and ending at an asterisk. Draw a
400× 400 square around your plot to represent the image boundaries.

10. Pick one of the points from the previous problem for which the tracker worked well, and one for which it did not (your choice).
State the row, column coordinates of the two points (make sure you say which coordinates are for the bad point, which for the good).
Give two mesh plots of the SSD residual surface for the two cases, and explain in what way the two plots indicate that the problem for
the good point is more likely to have a reliable solution than the one for the bad point. Feel free to add more pictures or other data if
they help make your point. [Hints: the SSD residual surface is the function e(d) = ε(xI ,d) in equation (1) of the class notes on point
correspondence. Pick a range of values for d that supports your point.]
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