
Epipolar Geometry and the Essential Matrix

Carlo Tomasi

The epipolar geometry of a pair of cameras expresses the fundamental relationship between any two
corresponding points in the two image planes, and leads to a key constraint between the coordinates of these
points that underlies visual reconstruction. The first Section below describes the epipolar geometry. The
Section thereafter expresses its key constraint algebraically.

1 The Epipolar Geometry of a Pair of Cameras

Figure 1 shows the main elements of the epipolar geometry for a pair of cameras.
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Figure 1: Essential elements of the epipolar geometry of a camera pair.

The world point P and the centers of projection of the two cameras identify a plane in space, the epipolar
plane of point P. The Figure shows a triangle of this plane, delimited by the two projection rays and by the
baseline of the camera pair, that is, the line segment that connects the two centers of projection.1

If the image planes are thought of extending indefinitely, the baseline intersects the two image planes
at two points called the epipoles of the two images. In particular, if the cameras are arranged so that the
baseline is parallel to an image plane, then the corresponding epipole is a point at infinity.

The epipoles are fixed points for a given camera pair configuration. With cameras somewhat tilted
towards each other, and with a sufficiently wide field of view, the epipoles would be image points. Epipole
eb in the image Ia taken by camera a would be literally the image of the center of projection of camera b in

1We use the term “baseline” for the line segment. However, this term is also often used for the entire line through the two centers
of projection.
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Ia, and vice versa. Even if the two cameras do not physically see each other, we maintain this description
in an abstract sense: each epipole is the image of one camera in the other image. Note that the epipole in
image Ia is called eb, because it is the image of camera b from camera a. Similar considerations hold for
ea.

The epipolar plane intersects the two image planes along the two epipolar lines of point P, each of which
passes by construction through one of the two projection points pa and pb and one of the two epipoles. Thus,
epipolar lines come in corresponding pairs, and the correspondence is established by the single epipolar
plane for the given point P.

For a different world point P, the epipolar plane typically changes, and with it do the image projections
of P and the epipolar lines. However, all epipolar planes contain the baseline. Thus, the set of epipolar
planes forms a pencil of planes supported by the line through the baseline, and the epipoles are fixed.

Suppose now that we are given the two images Ia and Ib taken by cameras a and b and a point pa in
Ia. We do not know where the corresponding point pb is in the other image, nor where the world point
P is, except that P must be somewhere along the projection ray of pa. However, if we know the relative
position and orientation of the two cameras, we know where the two centers of projection are relative to each
other. The two centers of projection and point pa identify the epipolar plane, and this in turn determines the
epipolar line of point pa in image Ib. The point pb must be somewhere on this line. This same construction
holds for any other point pa on the epipolar line in image Ia.

To understand what the epipolar constraint expresses, consider that the projection rays for two arbitrary
points in the two images are generically two skew lines in space. The projection rays of two corresponding
points, on the the other hand, are coplanar with each other and with the baseline, because they belong to
the same epipolar plane. The epipolar geometry captures this key constraint, and pairs of point that do not
satisfy the constraint cannot possibly correspond to each other.

2 The Essential Matrix

This section expresses the epipolar constraint described in the previous section algebraically.

Coordinate Systems. The standard reference system for camera a is a right-handed Cartesian coordinate
system with its origin at the center of projection of a, its positive Z axis pointing towards the scene along
the optical axis of the lens, and its X axis pointing to the right2 along the rows of the camera sensor. As
a consequence, the Y axis points downwards along the columns of the sensor. Coordinates in the standard
reference system are measured in units of focal distance. The standard reference system for camera b is
defined similarly. Let

apa =

 axa
aya
f

 and bpb =

 bxb
byb
f


denote the coordinates, relative to each camera’s canonical reference system, of the image points that are
the projections of the same world point P. Please pay attention to this definition: apa is a point on the
image plane, but is here viewed as a point in three-dimensional space. Like all points on the image plane of
camera a, its third (Z) coordinate in the camera’s reference system is f , the camera’s focal distance. Similar
considerations hold for bpb. Also, since each point is observed in its own camera, the reference system (left
superscript) is that of the camera the point appears in (right subscript).

2When the camera is upside-up and viewed from behind it, as when looking through its viewfinder.
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Finally, let
bp = aRb(

ap− atb) (1)

be the rigid transformation between the two reference systems. As we know, the reverse transformation is

ap = bRa(
bp− bta) where bRa = aRTb and bta = −aRbatb . (2)

The Essential Matrix. When expressed in the reference system of camera a, the directions of the projec-
tion rays through corresponding image points pa and pb are along the vectors

apa and bRa
bpb ,

and the baseline in this reference system is along the translation vector atb.
To simplify the notation in the manipulations that follows, we define

a = apa , b = bpb , R = aRb , t = atb , e = eb

to be the image measurements of the two corresponding points (each viewed as a three-dimensional point
in its own camera’s reference system), the parameters of the coordinate transformation from camera a to
camera b, and the epipole. Then, the rotation and translation in the reverse direction are

RT = bRa and −Rt = bta .

Coplanarity of the projection-ray directions a and RTb and baseline t can be expressed by stating that
their triple product is zero:

(RTb)T (t× a) = 0 that is, bTR (t× a) = 0 or bTR [t]×a = 0

where t = (tx, ty, tz)
T and

[t]× =

 0 −tz ty
tz 0 −tx
−ty tx 0


is the skew-symmetric matrix that expresses the cross-product of t with any other vector.

In summary, for corresponding points a and b the following equation holds:

bT E a = 0 (3)

where
E = R [t]× . (4)

Equation (3) is called the epipolar constraint and the matrix E is called the essential matrix. Equation (3)
expresses the coplanarity between any two points a and b on the same epipolar plane for two fixed cameras.

If point b is fixed in image Ib, then the product

λT = bT E (5)

is a row vector. If the fixed point a is replaced by a variable vector x in image Ia, then equation (3) can be
written as follows:

λTx = 0 . (6)
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This is a single linear equation in the coordinates of x, and therefore represents a line in the image plane of
Ia. The point a satisfies this equation by equation (3). Also the translation vector t satisfies equation (6),
because

λT t = bT Et = bT R [t]× t = 0

(recall that the cross product of a vector with itself is zero). The epipole e in image Ia is on the baseline,
and therefore its coordinates in the reference frame of camera a are proportional to those of t, so e satisfies
equation (6) as well. Thus, this equation represents the line through a and e, that is, the epipolar line of b
in image Ia: If we knew the essential matrix E for a pair of cameras, then we could find the equation of the
epipolar line for every point b in Ib.

This state of affairs must of course hold the other way around as well, when the roles of the two cameras
are switched. Before seeing this in more detail, however, we explore the structure of the essential matrix E.

The Structure of E. First, this matrix cannot be full rank, as the following geometric argument proves:
Since the epipole in image Ia belongs to all epipolar lines in Ia, not just one, the vector e of its coordinates
must satisfy equation (6) regardless of what point b is used in the definition (5) of λ. This can happen only
if e is in the null space of E, so this matrix must be degenerate.

The degeneracy of E can also be shown algebraically. More specifically, it is easy to see that the rank of
E is two for any nonzero t. To this end, note first that the matrix [t]× has rank two if t is nonzero, because

[t]×t = t× t = 0

and the null space of [t]× is exactly the line through the origin and along t. Since R is full rank, also the
product E = R [t]× has rank 2 if t 6= 0. In addition, the null space of E and that of [t]× are the same,
because the solutions to the two systems

[t]×x = 0 and E x = 0

are the same, since R is full rank. Therefore, the rank of E is 2 if t is nonzero, and the null space of E is the
line spanned by t and e.

There is more to the structure of E. For any vector v orthogonal to t, the definition of cross product
yields

‖[t]×v‖ = ‖t‖ ‖v‖ .

The vector v is orthogonal to t if it is in the row space of [t]×, and the equation above then shows that the
matrix [t]× maps all unit vectors (‖v‖ = 1) in its row space into vectors of magnitude ‖t‖. In other words,
the two nonzero singular values of [t]× are equal to each other.3 Since multiplication by an orthogonal
matrix (R) does not change the matrix’s singular values, we conclude that the essential matrix E has two
nonzero singular values equal to each other, and one zero singular value. The right singular vector v3

corresponding to the zero singular value of E is a unit vector along the epipole and the translation vector,

v3 ∼ e ∼ t . (7)

In these expressions, the symbol ‘∼’ means “proportional to,” or “equal up to a multiplicative constant.”
Since the two nonzero singular values of E are equal to each other, the corresponding right singular vectors
v1 and v2 are arbitrary, as long as they form an orthonormal triple with v3.

3Since equation (3) is homogeneous, if E is an essential matrix then so is αE for any nonzero α. Therefore, the common
magnitude of the two nonzero singular values is arbitrary.
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Figure 2: When the angle θ between the optical axis of camera a and the baseline approaches π
2 , the baseline

(that is, the line through a and along the translation vector t(θ)) becomes more and more parallel to the image
plane of camera a, and the epipole e(θ) tends to the point at infinity of the line ` through the principal point
π0 and e(θ0).

Scale and Epipoles at Infinity. Since the systems involving the essential matrix E are all homogeneous,
the translation vector t and the epipole e can only be found up to a scale factor. This limitation is consis-
tent with the fact that cameras fundamentally measure angles between projection rays, and cannot measure
lengths. For instance, if two images show a building, it is not possible to determine from image measure-
ments alone whether the pictures are of a real building taken from two cameras, say, three meters apart, or
they are images of a miniature building perhaps a hundred times smaller, taken from two cameras that are
three centimeters apart. Scale is irretrievably lost in imaging, even if multiple cameras are used and as long
as only the images are available—and not, say, the geometry of the camera arrangement.

While this loss of scale is generally a disadvantage of passive imaging with cameras at unknown posi-
tions, it has a positive consequence on the representation of epipoles and translation when the baseline is
parallel to the image plane of either camera.

To understand this observation, consider a situation in which the angle θ = θ0 between the optical axis
of camera a and the baseline is less than 90 degrees, as illustrated in Figure 2. The orientation of camera b
does not matter for this argument. Then, the baseline crosses the image plane of camera a at the epipole e
of b in image Ia, and the translation vector from a to b is proportional to e:

e =

 ex0
ey0
1

 and t = c e

where c is some constant.
Now gradually increase the angle θ beyond θ0 by rotating the baseline away from the optical axis. For

simplicity, think of this rotation occurring in the plane that contains the optical axis and e(θ0), so that the
epipole e(θ) moves along the line ` between the principal point π0 of a and e(θ0).
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Since the epipole is always in the image, its third coordinate is 1, and we have

e(θ) =

 ex(θ)
ey(θ)

1

 =

 h(θ)ex0
h(θ)ey0

1


where h(θ) is an increasing function of θ. When θ tends to π/2, the baseline becomes parallel to the image
plane of camera a. The scalar h(θ) tends to infinity, and the epipole moves infinitely far away from π0.

However, since the third left singular vector v3(θ) of the essential matrix has unit norm, it represents
the epipole e(θ)—and the translation t(θ)—only up to a constant. More specifically,

v3(θ) =
e(θ)

‖e(θ)‖
=

1√
1 + h2(θ) (e2x0 + e2y0)

 h(θ)ex0
h(θ)ey0

1


and we immediately see that

lim
θ→π/2

v3(θ) =
1√

e2x0 + e2y0

 ex0
ey0
0

 ,

a unit-norm vector as expected.
Thus, a singular vector v3 that has a third component equal to zero can be viewed as pointing to an

epipole e that is the point at infinity on the line `. Since t is proportional to v3 as well, we see that t(π2 ) is
also parallel to the image plane, consistently with the fact that for θ = π

2 camera b is to the side of camera
a, that is, in the plane z = 0 in the reference system of camera a.

In summary, the solution e or t provided by v3 is correct even when the baseline is parallel to the image
plane, as long as the epipole e is interpreted as a point at infinity on the image plane of camera a.

Switching Cameras. Suppose now that we fix a in image Ia but replace b by a varying vector in Ib. Then
we can repeat all the considerations above for the left null space and the left row space of E. In particular,
the product Ea for fixed a is a column vector, and equation (3) becomes the equation of the epipolar line
in image Ib. The third left singular vector u3 of E is the direction of the epipole ea in Ib in the reference
frame of camera b. Rather than showing this through a separate argument, we prove that ET is the essential
matrix that would be obtained if the roles of cameras a and b were reversed.

To this end, Table 1 shows the results both ways using full subscripts, to make sure we do not confuse
the two reference systems. To justify these results in the reverse direction, we then need to show that

aETb = bEa ,

that is, that transposing one essential matrix yields the essential matrix in the opposite direction. This result
is a straightforward consequence of the invariance of the cross product to rotation,

(Rx)× (Ry) = R (x× y)

which can be restated as follows for cross-product matrices:

[Rx]×R = R [x]× . (8)
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Because [atb]× is skew-symmetric,

aETb = (aRb [atb]×)T = −[atb]×
aRTb .

From our discussion of rigid transformations, we also know that if

bp = aRb(
ap− atb)

then
ap = bRa(

bp− bta) where aRb = bRTa and atb = −bRabta .

Therefore,
aETb = [bRa

bta]×
bRa

and from equation (8)
aETb = bRa [bta]× = bEa

as promised.

Use of the Epipolar Constraint. The epipolar constraint (3) is used in two different contexts. In stereo
vision, aRb and atb and therefore aEb are known. Given a point a in Ia, the epipolar constraint allows
restricting the search for a corresponding point b to the epipolar line of a. In visual reconstruction, several
pairs (ai,bi) of corresponding points are given, and equation (3) for each pair yields a linear equation in the
entries of aEb. From this, aEb and then aRb and atb can be found, as we will see in a later note.
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For two cameras a and b with nonzero baseline, let

bp = aRb (ap− atb)

be the coordinate transformation between points ap in a and points bp in b, and let

ap = bRa (bp− bta) with aRb = bRTa and atb = −bRa bta

be the transformation in the reverse direction.
The essential matrix of the camera pair (a, b) is the matrix

aEb = aRb [atb]× where [t]× =

 0 −t3 t2
t3 0 −t1
−t2 t1 0


and the essential matrix of the camera pair (b, a) is

bEa = aETb .

The epipole aeb is the image of the center of projection of camera b in image Ia and the epipole bea
is the image of the center of projection of camera a in image Ib. They satisfy

aEb
aeb = bEa

bea = 0 and also aEb
atb = bEa

bta = 0 .

A point apa in image Ia and its corresponding point bpb in image Ib, both written as 3D vectors in
their camera’s standard reference system, satisfy the epipolar constraint

bpTb
aEb

apa = 0 .

This equation can also be written as follows:

λTb
apa = λTa

bpb = 0

where
λb = bEa

bpb and λa = aEb
apa

are the vectors of coefficients of the epipolar line of pb in image Ia and that of pa in image Ib
respectively.
Up to a nonzero and otherwise arbitrary multiplicative constant, the singular value decomposition
of aEb is

aEb ∼ UΣV T =
[
u1 u2 u3

]
diag(1, 1, 0)

[
v1 v2 v3

]T
where

v3 ∼ aeb ∼ atb and u3 ∼ bea ∼ bta

and u1, u2, v1, v2 are any vectors for which U and V become orthogonal.

Table 1: Definition and properties of the essential matrix.
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