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Visual reconstruction takes as input several images of the same rigid object recorded from different
viewpoints and computes a three-dimensional model of the object. A key step in this computation is to
compute what is called a point cloud of the object, that is, a set of 3D points on the object’s surface. In turn,
computing a cloud of points from a set of images requires determining where the projection of each of the
points is located in each of the images.

Figure 1 shows a typical visual reconstruction pipeline: Start with a large collection of images of a
building or part of a city (top left in the Figure)—in this example, images are uploaded by interested pho-
tographers to a common wiki. A tree-based vocabulary of image parts (top center) is built to identify images
that are in some sense similar to each other. For any two similar images, one needs to find correspondences,
that is, pairs of points (with one point in each image) that correspond to the same point in the world. Corre-
spondences for a sample pair of similar images are connected by white line segments in the top right panel
of the Figure.

Figure 1: A typical visual reconstruction pipeline [4]. See text for an explanation.

Once correspondences are found for enough points and enough image pairs, the point cloud is computed
(bottom left) through a complex optimization problem. A side-output of this computation is also the world
position and orientation of each of the cameras that took the pictures. In the example, all the pictures were
taken by a single person walking with a hand-held camera in front of the buildings of interest, and the panel
on the bottom left of the Figure shows the position and orientation of the camera as one little arrow for every
picture taken. The points of the cloud are then connected with a triangular mesh, and the pixel colors from
the input images are back-projected onto it, leading to the more realistic surface rendering at the bottom
right of the Figure.
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It would be a relatively simple exercise in computer graphics to compute images if the shapes and colors
of buildings were known, together with the positions, orientations, and parameters of the cameras. In visual
reconstruction, however, one only has the images to work with, and the computation is all in reverse, from
images to world. These reverse computations are called inverse problems in physics, and are characterized
by ill-conditioning: Small errors in the images or inaccuracies in the initial computations on them lead to
possibly catastrophic errors in the output reconstructions. It is rather surprising that this computation is
possible even in principle. And yet the 3D reconstruction pipeline has now become commonplace, and is
one of the major accomplishments of computer vision to date. It was made possible by decades of advances
in the various aspects of the computation.

This note focuses on two early problems in the pipeline:

• How to determine points of interest, that is, image points that are promising candidates for correspon-
dence.

• How to determine correspondences.

As usual, we will consider one of many different approaches. Our choice falls on point-feature tracking,
because in this approach the two problems above can be addressed in a unified way. A relatively recent
survey [8] discusses many alternatives, and this research area is still very thriving, especially where it tries
to address larger inter-camera motions than feature tracking can handle.

If point-feature tracking is the method of choice, then the two problems above are best addressed in
reverse order: First figure out how tracking works, then declare a window to be a good candidate if it lends
itself well to tracking [6]. This heuristic principle leads to a definition of a good point-feature candidate that
is similar to that found through different arguments [3].

1 Correspondence by Tracking

A point feature (or “feature” for short1) is a small image window of a predefined size. Square windows with
5 to 21 pixels to a side are common. The side-lengths are typically odd, so one can think of the central pixel
in the window as “the point” one is interested in. If images of the scene—which is assumed to be static—are
taken from closely spaced positions and orientations, then corresponding point features in different images
are likely to be both close to each other geometrically and similar to each other photometrically, making
correspondence easier to determine. Under these conditions, establishing correspondence is called tracking.

Variety in viewpoint position and orientation turns out to make 3D reconstruction better, so if point-
feature tracking is the method of choice one typically uses only a subset of all the available images for
reconstruction, and all the intervening ones for correspondence: Correspondences are found between con-
secutive images and extended by transitivity to any pair of them.

Not all image windows are equally good candidates for tracking. For instance, if the window covers a
part of the image where intensity2 is more or less uniform, such as the middle of a blank wall, a small motion
of the window may not lead to noticeable differences in the window contents. In that case, the window’s
brightness distribution does not allow determining the displacement of the point feature reliably. This is
called the aperture problem in the literature, because it arises from viewing the image through the small
aperture of a feature window. A less severe version of the aperture problem arises when the feature window

1Do not confuse point-features with features used for image recognition.
2As customary, we think of gray-level images in this context, although one could also use color to some advantage.
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Figure 2: The 15×15 window at the top right comes from the relatively blank area at the top left of the low-resolution
image detail shown on the left. Shifting that window around by a few pixels does not change its contents appreciably,
and any changes that do occur may be small compared to image noise. The 15× 15 window at the bottom right comes
from around one of the many vertical edges in the image. Shifting the window by even a small amount horizontally,
say to the right, will cause the edge in it to move to the left, so the horizontal component of motion can be reliably
determined along a vertical edge. However, if the window is shifted vertically by a small amount, changes in it are
minor, and may again be overwhelmed by image noise: The vertical component of motion cannot be measured reliably.

straddles a straight intensity edge. In that case, motion across the edge is clearly visible, but motion along it
is not. Figure 2 illustrates.

Thus, a window that can be tracked well could be defined by requiring that its contents are sufficiently
varied. This was done by Harris and Stephens [3] in 1988, and let to what is called the Harris detector. This
note follows instead the derivation given by Shi and Tomasi [6] in 1994 for a feature tracker that generalized
the vastly popular Lucas and Kanade tracker [5] from pure translation to affine image deformations. The
main advantage of the Shi-Tomasi derivation is pedagogical brevity, as both tracking and the best windows
for it are found within the same theoretical framework. Section 4 follows that derivation but maps it back
to the pure-translation case of the Lucas and Kanade tracker. This choice is made both for simplicity and
because the pure-translation tracker works best for very small image displacements, where one can speak of
a single motion for the entire window. The detectors that result from the two alternative derivations are very
similar to each other and work equally well.

In summary, Section 3 describes the Lucas and Kanade tracker, and Section 4 derives a point-feature
detector very similar to the Harris detector, by following the derivation by Shi and Tomasi.

2 Tracking

Let I(x) and J(x) be two gray-level images of the same scene taken from slightly different viewpoints and
possibly orientations, and let us focus our attention on a point feature, that is, a small, square windowW (xI)
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of odd side-length 2h+ 1 pixels, centered at some point xI in I . The question is, what are the coordinates

xJ = xI + d∗(xI)

of the corresponding window’s center in image J? The two-dimensional vector d∗(xI) is called the dis-
placement of that point feature, and the assumption is made that the motion of the camera between the two
images is so small3 that the magnitude of d∗(xI) is much smaller than the diameter of W (xI).

A natural way to answer the question above is to measure the dissimilarity or residual between W (xI)
and a candidate window in J as follows:

ε(xI ,d) =
∑
x

[J(x + d)− I(x)]2 w(x− xI) (1)

where the double summation over x = (x1, x2)
T extends to the whole plane and w(x) is the indicator

function of the window W (0):

w(x) =

{
1 if |x1| ≤ h and |x2| ≤ h
0 otherwise

.

The residual (1) is thus the sum of squared differences between the pixels in a window around xI in I and a
window around xJ = xI +d in J . One can then search for the displacement that makes the dissimilarity as
small as possible:

d∗(xI) = arg min
d∈R

ε(xI ,d) (2)

where the square R ⊆ R2 is centered at the origin of the plane and is called the search range. Do not
confuse the feature window W (xI) with the search range. The former is part of the image I , while the latter
is a square region in the plane of all possible displacements. The assumption that the displacement is small
relative to the window size implies that R has a half-size that is significantly less than h.

Each image point xI in I will have its own displacement d∗(xI), and the function R2 → R2 that maps
image points xI in I to their displacement is called the displacement field. For brevity, we will omit explicit
mention of the dependency of d∗ on xI when there is no ambiguity.

This approach to correspondence makes the implicit assumption that the image motions contained in
W (xI) are all the same, so that there is a single displacement for the whole window. This is approximately
true for many small motions and small windows, but not in general, and may be violated even for small
motions and windows. For example, Figure 3 shows details from three consecutive frames out of a movie.
If the tracking window were placed, say, around the tip of the arrow on the street sign, the window would
contain two very different motions: that of the sign and that of the background. To somewhat lessen the
effects of multiple motions in the same window, it is customary to replace the indicator function w(x) with
a truncated Gaussian:

w(x) ∝

{
e

1
2

(
‖x‖
σ

)2

if |x1| ≤ h and |x2| ≤ h
0 otherwise

where σ is comparable to the half-width h of the window and is typically between σ = h/3 and σ = h/2. In
this way, the dissimilarity (1) depends more on what happens close to the center of the window than on what
happens at its periphery. Should this measure be inadequate to capture the complexity of motions in the
window, one could model these with an affine geometric transformation [6], rather than just a translation.

3It is not really necessary for the two pictures to be taken by the same camera. Nonetheless, when small motion occurs they
typically are.
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Figure 3: Details from three consecutive frames out of Woody Allen’s 1979 movie Manhattan.

Figure 4: Detail from a fabric sample. [Image adapted from mayang.com.]

One can use any of a wide variety of optimization methods to solve problem (2), including direct grid
search: Simply write a for loop that searches for d∗(xI) over all possible integer displacements d in R.
The advantage of this method is that local minima are less of a problem. Consider for instance a highly
textured window, like the one in figure 4. A window placed anywhere on this image is likely to be at least
somewhat similar to many other windows in the same image, because of the repetitive nature of the pattern
it contains. As a result, the residual (1) is likely to have many local minima. An exhaustive search will
compute all of the residuals within the range R, and select the window that yields the smallest one.

The main disadvantage of exhaustive search, besides a possibly slower running time, is that the resolu-
tion of the resulting displacement d∗ is limited to the pitch of the search grid. To make resolution better, one
would have to use a fine grid, with a resulting higher computational cost.

Good resolution during tracking is important for two reasons. First, as mentioned earlier, 3D reconstruc-
tion is an ill-posed problem, so we cannot afford imprecise motion measurements. Second, small errors tend
to accumulate when tracking over several frames, a problem called drift in the literature: When tracking
a feature from image 1 to image to 2 and then to image 3, the window found by grid search in image 2
may not correspond exactly to the starting window in image 1. In turn, the window found in image 3 may
not correspond exactly to that found in image 2. These small errors tend to accumulate, resulting in large
drifts across distant frames. Some methods have been proposed to monitor or reduce drift [6], but accurate,
sub-pixel displacements are desirable in any case, because of the ill-posedness of reconstruction.

Because of this, features are often tracked by differential methods, perhaps after grid search has provided
a good starting point. The original paper by Lucas and Kanade [5] uses the Newton-Raphson method,
described next.
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3 The Lucas and Kanade Tracker

Let us simplify the notation for the optimization problem (2) and residual (1) as follows:

d∗ = arg min
d
e(d) (3)

where we abbreviate ε(xI ,d) to e(d). In this way, we only pay attention to what changes during optimiza-
tion (that is, the displacement d), and not what remains fixed (the position xI of the window in image I).
The choice of replacing d ∈ R with an unconstrained d in the minimization (3) is more controversial. In
doing so, we are effectively ignoring the limited search range for d. The advantage is that unconstrained
optimization is easier than constrained optimization if one just wants a local minimum. The disadvantage
is that we may get a displacement d∗ whose norm is bigger than we are willing to accept—that is, we may
move too far from xI . To simplify the discussion, we accept this risk but add some sanity checks: If, after
minimization is complete, either the norm of d∗ or the residual e(d∗) is too large, we discard the solution
and declare failure. This is actually what many trackers do, because the opportunity cost of losing a few
feature tracks per image is small relative to the computational cost of accounting for the constraints. Of
course, optimization methods that account for constraints do exist [1].

Newton’s method for solving the unconstrained optimization problem (3) amounts to starting at some
initial point d0 at iteration t = 0. In iteration t, find the Hessian

He(dt) =

[
∂2e
∂d21t

∂2e
∂d1td2t

∂2e
∂d2td1t

∂2e
∂d22t

]

and gradient

∇e(dt) =

[
∂e
∂d1t
∂e
∂d2t

]
at displacement dt, solve the linear, 2× 2 system of normal equations

He(dt)s = −∇e(dt) (4)

for the Newton step st, move by that step,

dt+1 = dt + st , (5)

and iterate until convergence.
The rationale for Newton’s step is that the function e(d) is approximated by its second-order Taylor

expansion around dt:

e(d) ≈ e(dt) + [∇e(dt)]T (d− dt) +
1

2
(d− dt)

THe(dt)(d− dt) .

In other words, e(d) is replaced by the best quadratic fit to it around dt. Setting the derivative of this
approximation to zero yields the system (4) with

s = d− dt ,

and the step st that solves the system finds the exact minimum of the approximation. Since this may not be
the exact minimum of e(d), the process is iterated.
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The convergence of Newton’s method can be shown to be quadratic in the following sense:

lim
t→∞

|dt+1 − d∗|
|dt − d∗|2

= µ

where µ is a positive real number4. This rate is very fast: After several iterations (this is the limit part), the
error at iteration t+ 1 is proportional to the square of the error at iteration t. In terms of digits, the number
of accurate decimal digits doubles at every iteration!

The issue with applying Newton’s method directly to problem (3) is that the argument d in function e(d)
is contained inside the expression J(x+d) (see equation (1)), and computing second derivatives of an image
is both expensive and sensitive to noise. Instead, Raphson’s variant of Newton’s method first linearizes the
image J around every point x in the image window, and uses the linearization in the definition of residual
(1). This leads to a different quadratic approximation than the one given by the Taylor expansion of e(d),
but the rest is the same. The advantage of this different approximation is that it only requires computing
first-order derivatives of the image, as opposed to the second derivatives required by Newton’s method.
Raphson’s variant works because the residual is a sum of squares in our problem: The sum of squares of
a linear(ized) function of the step s is a quadratic function of s, and finding its minimum becomes a linear
problem.

More specifically, let
Jt(x) = J(x + dt)

be the result of shifting the image J by the displacement found in iteration dt. The problem is now to find
a step st that, when added to dt, yields the new displacement dt+1 (equation 5). To this end, the nonlinear,
shifted image function Jt(x + s) = J(x + dt + s) is replaced with its first-order Taylor expansion around
x,

Jt(x + s) ≈ Jt(x) + [∇Jt(x)]T s (6)

so that the residual (1) at the (unknown) point dt + s can be approximated as follows:

e(dt + s) =
∑
x

[J(x + dt + s)− I(x)]2 w(x− xI)

=
∑
x

[Jt(x + s)− I(x)]2 w(x− xI)

≈
∑
x

[Jt(x) + [∇Jt(x)]T s− I(x)]2 w(x− xI) ,

a quadratic function of s. The gradient of e at dt + s then becomes

∇e(dt + s) ≈ 2
∑
x

∇Jt(x){Jt(x) + [∇Jt(x)]T s− I(x)} w(x− xI) .

Setting this gradient to zero yields to the following linear system of equations in s:

As = b (7)

where5

A =
∑
x

∇Jt(x)[∇Jt(x)]T w(x− xI) and b =
∑
x

∇Jt(x)[I(x)− Jt(x)] w(x− xI) . (8)

4The term “quadratic” refers to the exponent 2 in the denominator.
5Note that −2b is the gradient of e at dt. So by comparing with the normal equation (4), we see that 2A is an approximation to

the Hessian of A.
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This is a small, 2 × 2 system that forms the core of the Lucas and Kanade tracker. The tracker solves this
system starting with some initial displacement d0 at iteration t = 0, shifts the image Jt by d0, then iterates
by finding step st = dt+1 − dt and repeating until convergence, every time shifting the image Jt further by
the step st. The overall displacement is then the sum of all the steps,

d∗ =
∑
t

st .

Since J is continually shifted during iterations of the algorithm, the image Jt(x) becomes more and more
similar to I(x) within the feature window, and the residual decreases. In addition, the Taylor approximation
(6) becomes better and better, because the step st becomes smaller and smaller.

Algorithm 1 summarizes the computation. The subscript t can be dropped everywhere in the algorithm,
because old variable values are simply overwritten by new ones.

Algorithm 1. The Lucas and Kanade tracker
Input: Images I and J , window center xI in I , window functionw(x), initial displacement d0, termination

thresholds δ, ε, ρ, tmax, and largest acceptable residual emax

1: X ← {x | w(x) > 0} . X is the support of the window function w(x)
2: w← w(X) . w is a column vector of all the nonzero values of w(x)
3: X ← X + xI . The set X now contains the window coordinates in I
4: i← I(X) . i is a column vector of all the image values of I on X
5: d← d0 . Initialize the cumulative displacement
6: s← d0 . The first shift of J is equal to the initial displacement
7: t← 0 . t is the iteration count
8: repeat
9: t← t+ 1 . Keep track of the number of iterations

10: X ← X + s . The set X now tracks the window coordinates in J
11: j← J(X) . j is a column vector of all the image values of J on X
12: G← ∇J(X) . G is a two-column matrix of all the gradients of J on X
13: A← GT (G .* [w,w]) . The 2× 2 matrix A in equation (7)
14: b← GT ((i− j) .* w) . The 2× 1 vector b in equation (7)
15: s← A \ b . Solve for the step
16: dold ← d . Remember the old value of d to check for progress
17: d← d + s . Accumulate the step s into the displacement d
18: done = ‖s‖ ≤ δ or e(dold)− e(d) ≤ ε . Progress has slowed down beyond our thresholds
19: lost = ‖d− d0‖ > ρ or t > tmax . We are probably lost
20: until done or lost
21: if lost or e(d) > emax then . We are either lost or the final residual is too large
22: d∗ ← [NaN; NaN] . Tracker failure
23: else
24: d∗ ← d . Success
25: end if
Output: Locally optimal displacement d∗ at xI , or a “failure” value.
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Practicalities

Checks for convergence include a threshold on the size of the current step st and on the decrease in residual.
Since the constraint that the overall displacement be within the range R is ignored, it is customary to check
that the accumulated displacement dt does not take us too far away from the initial displacement d0. To
ensure termination in a finite amount of time, a maximum number of iterations is also imposed. Thus,
iterations continue as long as

‖st‖ > δ and e(dt−1)− e(dt) > ε and ‖dt − d0‖ ≤ ρ and t ≤ tmax

for suitable positive thresholds δ, ε, ρ. Violating either of the first two conditions signals convergence, while
violating either of the last two implies failure.

To make things concrete, Algorithm 1 is written in a matrix style somewhat reminiscent of MATLAB.
The set X defined in line 1 initially keeps track of the coordinates where the window function w(x) is
nonzero.6 After X has been used to store away all the nonzero values in the window into the K × 1 vector
w (line 2), the coordinates in X are shifted by the center xI of the window of interest in image I (line 3),
and the new coordinates are used to collect the pixel values found in that window into the K × 1 vector i
(line 4). Then the set X is shifted again on line 10, and from now on X stays on top of the window in J ,
rather than that in I . The matrix G defined on line 12 is K × 2, and each of its rows represents the gradient
of J at one of the pixels in the moving window. Lines 13 and 14 assemble the 2× 2 system (7), and line 17
accumulates the steps into the overall displacement.

The very first time the algorithm is run, the coordinates in X on line 4 are typically integers, because
there is rarely a strong reason why the initial point xI would not be on the integer pixel grid. However, the
steps s found during optimization are generally not integer. In addition, once a point feature is tracked, say,
from frame 1 to frame 2, the coordinates of its center are generally no longer integer, so when that point is
subsequently tracked from frame 2 to frame 3, even the center xI of the window in I (frame 2 in this case)
may be non-integer. In these situations, the assignment on lines 4, 11, and 12 are implemented by bilinear
interpolation.

The initial displacement d0 is often set to the zero vector, to reflect the assumption that motion between
frames is small. An (expensive) alternative is to first do an exhaustive search for the minimum residual over
a grid of displacements d (every pixel, or every few pixels, in both directions within a range R), and then
run the Lucas and Kanade tracker starting at that minimum to refine.

When image motion is large, the tracker can be run on a truncated image pyramid: First find motion at a
set of points in the coarser levels of the pyramid, then track points at each finer level using the properly scaled
motions at the coarser level to initialize. Specifically, when tracking point x(`)

I at level `, let x(`+1)
I be the

coordinates of the corresponding point at the next-coarser level `+ 1. Let d(`+1)
0 be the displacement found

at the point among the tracked points at level `+ 1 that is nearest to x
(`+1)
I . Finally, scale the displacement

d
(`+1)
0 to account for the scale difference between the two levels and use the scaled displacement to initialize

the Lucas and Kanade tracker at x(`)
I . This scheme works rather well for relatively large motions and with

only a modest number of levels in the pyramid [7].
6This set could be implemented as a K × 2 matrix in MATLAB if there are K nonzero pixels in the window.
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4 Good Features to Track

As mentioned in the introduction, not every feature can be tracked well, because of the aperture problem.
The optimization problem addressed by the Lucas and Kanade tracker can be solved reliably when the sys-
tem (7) at the core of the algorithm has a well-defined solution, that is, when the system is well-conditioned.
This means that if the ideal matrix Ã and ideal vector b̃ in the system are affected by some error, the solution
s does not change much.

More quantitatively, suppose that the ideal system

Ãs = b̃

is perturbed into the actual system
As = b

where
A = Ã+ εE and b = b̃ + ε e

for any matrix E and vector e of suitable size. Then if s̃ and s are the solution to the ideal system and the
solution to the perturbed one, Appendix A shows that the relative error

ρs =
‖s− s̃‖
‖s̃‖

on the solution can be bounded as follows:

ρs ≤ κ2(Ã) (ρb + ρA) (9)

where

κ2(Ã) =
σmax(Ã)

σmin(Ã)
≥ 1 , ρb = |ε| ‖e‖

‖b̃‖
and ρA = |ε| ‖E‖

‖Ã‖
.

The scalars ρb and ρA measure the relative errors on b̃ and Ã. The quantity κ2(Ã) is called the condition
number of Ã, and is equal to the ratio between the greatest and the smallest singular value of A. The
convention is made that

κ2(Ã) =∞ whenever σmin(Ã) = 0 .

In the definitions above and in Appendix A, the Euclidean norm ‖z‖2 is used to measure the magnitude of
vectors, and the 2-norm is used for matrices,

‖B‖2 = sup
z

‖Bz‖2
‖z‖2

= sup
‖z‖2=1

‖Bz‖2 = σmax(B) ,

the largest singular value of B. If a different norm is used, the result above merely changes by a constant
factor, since matrix norms can always be bounded by suitable multiples of each other from above and from
below [2]. We omit the subscript 2 from the norms for brevity.

Equation (9) states that if the condition number of the ideal matrix Ã is small then the solution to the
perturbed system (7) is not very different, in relative terms, from the solution of the ideal system. Of course,
we do not have the ideal matrix, but we take the condition number κ2(A) of the actual matrix as an estimate
of that of Ã. In addition, the matrix A keeps changing during execution of the Lucas and Kanade algorithm

10



(see line 13 in Algorithm 1). So we take the matrix A(xI) computed around point xI in image I to be an
estimate of the matrix A for the moving window in J .

In summary, we say that a point feature centered at xI in image I is a good feature to track if the
condition number of this matrix is below some predetermined threshold κmax:

κ2(AI(xI)) ≤ κmax where AI(xI) =
∑
x

∇I(x)[∇I(x)]T w(x− xI) .

The expression of AI(xI) is a convolution of the matrix image

Γ(x) = ∇I(x)[∇I(x)]T =

[
γ11(x) γ12(x)
γ21(x) γ22(x)

]
with the window function w(x), a fact that can be used to advantage for efficient computation, especially
after noticing that w(x) is separable. The image Γ(x) is a matrix image in the sense that it has a 2×2 matrix
at every pixel, so you can think of it as four separate, scalar images. This matrix is both symmetric,

γ12(x) = γ21(x)

(so you only need to compute and store three images, not four), and rank-deficient (that is, its rank is at most
1), because it is the product of a column vector and a row vector. However, the symmetric matrix AI(xI) is
generally not rank-deficient, because it is a sum of many (rank-deficient) matrices.

It may help intuition to look at the structure of AI(xI) for some special image windows, and relate
this structure to our earlier discussion of the aperture problem. If the image intensity function is constant
within the window, the gradient∇I(x) is everywhere zero in the window and so is Γ(x). As a consequence,
AI(xI) is zero as well, and its condition number is infinity (by our convention on κ2). If AI(xI) straddles
a vertical edge, or even a collection of vertical edge elements, then the vertical component of the gradient is
zero everywhere in the window,

∇I(x) =

[
g1
0

]
so that Γ(x) =

[
γ11(x) 0

0 0

]
and therefore

AI(xI) =

[
a11(xI) 0

0 0

]
.

This is a rank-1 matrix, and its condition number is infinite again. Similar considerations hold for edges
in different orientations, in the sense that AI(xI) is rank-1, although it will generally not have zero entries
unless the edges are aligned with the coordinate axes.

These degenerate cases correspond to occurrences of the aperture problem. They also show that if
σmin(AI(xI)) ≈ 0, that is, when the matrix AI(xI) is close to being rank-deficient, the condition number
does not matter, because a small condition number (that is κ2(AI(xI)) ≈ 1) could be achieved by two
nonzero but very small singular values that are approximately equal to each other. This suggests modifying
the check for a good feature to the following:

κ2(AI(xI)) ≤ κmax and σmin(AI(xI)) ≥ σ0

for some positive threshold σ0.
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It is only when gradients in the window centered at xI have different orientations that the condition
number of AI(xI) becomes finite and relevant. When the variety of orientations and strengths of the edges
are high, the condition number is close to 1, and the window is a good feature to track.

When the window centered at xI is such a feature, chances are that windows that overlap with it are
good features as well, because they contain closely related pixel values. So the good features are selected
by non-maximum suppression: Pick a best point feature in the image, that is, a point feature with smallest
condition number7. Then remove all good point features that overlap with it and repeat, either until no good
point features remain or enough features have been collected. Algorithm 2 summarizes the computation of
good features to track. The function overlap(X,xT ) on line 15 takes a matrix X of pixel coordinates and a
single row vector xT with the coordinates of one point, and returns the row indices for X that correspond to
windows that overlap with the window centered at xT .

Algorithm 2. Finding good features to track
Input: Image I , window function w(x), thresholds κmax > 1 and σ0 > 0 on the maximum condition

number and on the smallest σmin allowed, and maximum number nmax of features needed (can be set
to infinity)

1: X ← pixels(I) . X is a two-column matrix of all the pixel coordinates in the image
2: G← gradient(I) . G is a two-column matrix of all the gradients in the image
3: Γ← [G(:, 1) .ˆ 2, G(:, 1) .∗ G(:, 2), G(:, 2) .ˆ 2] . Distinct entries of∇I(x)[∇I(x)]T

4: A← Γ ∗ w . Convolution of Γ(x) with the window function w(x)
5: S ← A(:, 1) +A(:, 3) . A piece of the formula for eigenvalues
6: D ←

√
(A(:, 1)−A(:, 3)) .ˆ 2 + 4A(:, 2) .ˆ 2 . Discriminant

7: σmax ← 1
2(S +D) . Compute singular values

8: σmin ← 1
2(S −D) . (this is done in closed form for a 2× 2 matrix)

9: X ← X(σmax ≤ κmaxσmin & σmin ≥ σ0 , :) . Good enough features
10: X ← X sorted by increasing σmax/σmin . Put best features first
11: Y ← [ ] . Y collects the final point-feature coordinates
12: for n = 1 to nmax do . Loop for non-maximum suppression
13: if X is empty then . No more good features left
14: break
15: end if
16: Y ← [Y ;X(1, :)] . Pick the best feature remaining
17: X ← X(∼overlap(X,X(1, :)), :) . Keep only windows that do not overlap with X(1, :)
18: end for
Output: Two-column matrix Y of coordinates for at most nmax non-overlapping, good point features

7Or with largest σmin, or some combination of these two criteria. Which sorting criterion to use is not critical, as all features
remaining at this point are good enough for tracking.
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A The Sensitivity of the Solution to a Linear System to Errors in the Coefficients

Suppose that the ideal matrix Ã and ideal vector b̃ in the linear system

Ãx = b̃

are affected by errors. This Appendix examines the relationship between the relative magnitude of these
errors and the relative magnitude of the error in the solution to the system. The factor by which the former
errors are amplified to yield the latter is called the condition number of the matrix Ã, and can be computed
from the SVD of it.

To measure errors in Ã and b̃ with a single scalar ε, we write these errors as

A− Ã = εE and b− b̃ = ε e

where E and e are a 2× 2 matrix and a 2× 1 vector. So the real, perturbed system

Ax = b

can be written as
(Ã+ εE) x = b̃ + ε e .

Let us assume that each of these two system admits a single solution, so that the matrices A and Ã are
invertible.8 Then, the solution to the perturbed system can be viewed as a function of ε,

x(ε) = (Ã+ εE)−1 (b̃ + ε e) ,

and in particular x(0) is the solution to the ideal system Ãx = b̃.
To study the sensitivity of x with respect to εwe approximate the function x(ε) with its Taylor expansion

truncated after the linear term. Straightforward matrix calculus yields

ẋ(0) =
[
−(Ã+ εE)−1E (Ã+ εE)−1 (b̃ + ε e) + (Ã+ εE)−1e

]
ε=0

= −Ã−1EÃ−1b̃ + Ã−1e = Ã−1 (e− EÃ−1b̃)

= Ã−1 (e− E x(0))

so that to first order
x(ε) ≈ x(0) + ẋ(0)ε = x(0) + εÃ−1 (e− E x(0)) .

Rearranging terms and using standard norm inequalities then yield the following bound on the relative
magnitude of the error on x(ε) for ε→ 0:

ρx =
‖x(ε)− x(0)‖
‖x(0)‖

≤ |ε| ‖Ã−1‖
(
‖e‖
‖x(0)‖

+ ‖E‖
)
.

Since b̃ = Ãx(0), we have
‖b̃‖ ≤ ‖Ã‖ ‖x(0)‖

and therefore

ρx ≤ |ε| ‖Ã−1‖ ‖Ã‖
(

‖e‖
‖Ã‖ ‖x(0)‖

+
‖E‖
‖Ã‖

)
≤ ‖Ã−1‖ ‖Ã‖

(
|ε| ‖e‖
‖b̃‖

+ |ε| ‖E‖
‖Ã‖

)
.

8This assumption will be removed later.
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To summarize,
ρx ≤ κ2(Ã) (ρb + ρA) (10)

where

ρx =
‖x(ε)− x(0)‖
‖x(0)‖

, κ2(Ã) = ‖Ã−1‖ ‖Ã‖ , ρb = |ε| ‖e‖
‖b̃‖

and ρA = |ε| ‖E‖
‖Ã‖

.

The scalars ρb and ρA measure the relative errors on b̃ and Ã, and κ2(Ã) is called the condition number of
Ã.

Equation (10) states that the condition number of the matrix Ã of the ideal system Ãx = b̃ is the
scalar that multiplies the sum of relative errors on the coefficients of the system to yield a bound on the
relative error on the solution of the system. Since the two-norm of a matrix is its largest singular value
and the singular values of the inverse are the reciprocals of the singular values, the two-norm of Ã−1 is the
reciprocal of the smallest singular value of Ã, and therefore

κ2(Ã) =
σmax(Ã)

σmin(Ã)
and κ2(Ã) ≥ 1 .

If either A or Ã is not invertible, then the solution of the corresponding linear system is underdetermined,
and the sensitivity of the error in the solution is unbounded. The result (10) therefore holds in all cases if we
make the natural convention that

σmin(Ã) = 0 ⇒ κ2(Ã) =∞ .
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