
Deep Convolutional Neural Nets

Carlo Tomasi

This note covers one particular way for building a particular type of deep feed-forward network. More
variants and details can be found in many books or articles on neural nets [1], convolutional neural nets [5],
and deep learning in general [2].

1 Neurons

A neuron (in the computational sense) is a function RD → R of the form

y = h(a(x)) where a = wT x̃ , x̃ =

[
x
1

]
,

the entries of the vector w ∈ RD+1 are called the weights, and the activation function is a nonlinear and
weakly monotonic function R → R. The input a(x) to h is called the activation of the neuron, and the
particular type of activation function

h(a) = max(0, a)

is called the Rectified Linear Unit (ReLU, Figure 1).

a

h

Figure 1: The Rectified Linear Unit (ReLU).

The activation can be rewritten as follows

a = vTx+ b where vT = [w1, . . . , wD] and b = wD+1 ,

and is an inner product between a weight vector v and the input x plus a bias b. For different inputs x of
the same magnitude1, the activation is maximum when x is parallel to v, and the latter can be viewed as
a pattern or template to which x is compared. The bias b then raises or lowers the activation before it is
passed through the activation function.

The ReLU will respond (that is, return a nonzero output) if the inner product vTx is greater than −b (so
that a is positive), and the response thereafter increases with the value of a. So the negative of the bias can

1As measured by its Euclidean norm ‖x‖.

1

be viewed as a threshold that the inner product between pattern and input must exceed before it is deemed to
be significant, and the neuron can be viewed as a score function that measures the similarity of the suitably
normalized input x to the pattern v, assuming that the similarity is significant (that is, greater than −b). A
pattern classifier would add a stage that decides if the score is large enough to declare the input x to contain
the pattern represented by v. So another way to view a neuron is a pattern classifier without the decision
stage.

2 Two-Layer Neural Nets

A neural-net layer is a vector of D(1) neurons, that is, a function RD → RD(1)

y = h(a(x)) where a(x) =W x̃ ,

the weight matrixW isD(1)×(D+1), and the activation function h is applied to each entry of the activation
vector a(x) ∈ RD(1)

. So a neural-net layer can be viewed as a bank of pattern scoring devices, one pattern
per neuron.

To compute the output of a layer from its input one needs to perform D(1)(D + 1) multiplications and
almost as many additions to compute the activation vector, and then compute the activation function D(1)

times. So if D(1) is of the same order of magnitude as D, the cost of this computation is quadratic in the
size D of the input x. Even more importantly, there are O(D2) parameters (the entries of W) that need to
be determined when the layer is trained.

A two-layer neural net is a cascade of two layers,

x(1) = h(W (1)x̃)

y = hy(W
(2)x̃(1))

where the activation function hy is in general different from h and W (2) is D(2) × (D(1) + 1).
It can be proven [6] that any mapping RD → RD(2)

that is Lebesgue-integrable and has Lebesgue-
integrable Fourier transform can be approximated to any finite degree of accuracy over a hypercube in RD
with a two-layer neural net where hy is the identity function and h is the ReLU. This result, along with
similar ones for other activation functions [3], shows that two-layer neural nets are universal approximators.

The mathematics used in the proof for the ReLU is complex. Here is a simpler but informal argument
that might convince you of the universal approximator property, at least in one dimension (D = D(2) = 1).

First, the triangle function

t(x) =


1 + x if −1 ≤ x ≤ 0
1− x if 0 ≤ x ≤ 1
0 otherwise

can be built as
t(x) = h(x+ 1)− 2h(x) + h(x− 1) (1)

where h is the ReLU. This construction is shown on the left in Figure 2. The function

α t
(x
T

)
is a version of t that is scaled in both domain and range. In a two-layer neural net, the domain shifts in
equation (1) can be achieved by the biases in W (1), and domain scaling can be achieved by gains in W (1).

2

-1

1

1

h(x+1) h(x-1)

−2h(x)

T

Figure 2: Left: Three ReLU functions with proper displacements (blue) can be linearly combined to form a
unit triangle function (black). Right: Any piecewise-linear function (sampled at regular intervals as in the
figure, or otherwise) can be written as a linear combination of triangle functions.

Both range scaling and the linear-combination coefficients in equation (1) can be implemented through gains
in W (2).

Given a function f(x) defined over some interval X , approximate it with a piecewise linear function
that interpolates linearly between samples of f taken with sampling period T :

g(x) =
∑
k

f(kT) t

(
x− kT
T

)
(see right panel in figure 2). By making T small enough, the quality of the approximation can be made as
good as desired. Since g is in the form of a two-layer neural net, the argument is complete.

However, a two-layer approximator to a given function f may be very expensive to implement. For
instance, many triangle functions may be needed in the construction above, especially for functions whose
domain is multidimensional (large D). Deep neural nets are introduced in the hope that they lead to more
efficient approximations, as discussed in the next two sections.

3 Convolutional Layers

A neuron matches the input x to a pattern v. What should the patterns in an image recognition system be?
One could make x be the entire image, with its pixels strung into a vector, and then v could be an image
(in vector form as well) of the object to be recognized—say, your grandmother’s face. This net would not
work well, as your grandmother’s face could show up in images that look very different from v because of
viewpoint, lighting, facial expression, other objects or people in the image, and other causes of discrepancy.

Instead, observe that faces typically have eyes, noses, ears, hair, and wrinkles—especially for an older
person. These features can be analyzed in turn in terms of image edges, corners, curved segments, small
dark regions, and so forth. This suggest building a hierarchy of patterns, where higher-level ones are made

3

of lower level ones, and only the lowest-level patterns are made directly out of pixels from the input image.
At each level, each pattern should then take only a relatively small number of inputs in consideration, from
a relatively small and compact part of the image: each neuron should have a local receptive field.

In addition, many of the lower-level features appear multiple times in images and across objects, and
this suggests that the same neuron could score patterns of its own type no matter where they appear in an
image: the same detector could be reused over its domain.

Finally, if higher-level patterns are somehow made somewhat insensitive to exactly where in the image
the relevant lower-level patterns occur, then the overall system would be able to recognize your grand-
mother’s face even in the presence of at least some amount of variation. A hierarchy with many levels may
be able to achieve this even more easily, since a small amount of resilience to spatial variation in each layer
might result in more significant resilience once it is compounded across layers.

These notions of locality, reuse, and resilience to spatial variations suggest imposing the following
structure on a neural-net layer [5, 4].

• Think of the input x as a two-dimensional array, one entry per pixel, rather than a vector, so that the
notion of locality is more readily expressed.

• Group the activations ai (the entries of a) into M maps: each map takes care of one type of pattern,
each pattern has a small receptive field, there is a neuron for very many of the possible receptive field
in the image, and all the neurons in the same map have the same weights and activation function. A
pattern with a small receptive field is called a feature, so the M maps are called feature maps.

This convolutional organization is illustrated in figure 3, and is now described with terminology that
relates to the first layer in a net. Let the input image be square and withN×N pixels, so thatD = N2,
and let the receptive field of a neuron be an R × R square of pixels where R = 2H + 1 is a small
odd integer, maybe 5. If the receptive field is to be fully contained in the image, its upper-left corner
can be anywhere at row 1 through N − R + 1 and column 1 through N − R + 1. Consider all these
positions sampled with a stride s, so that only rows 1, 1 + s, 1 + 2s, . . . are considered, and similarly
for the columns.2 Then, each feature map has one activation per receptive field in the input image,
and is therefore itself an array (or an “image”) of size N (1) ×N (1), where

N (1) =

⌊
N −R
s

⌋
+ 1 . (2)

Each activation in every feature map is the inner product of the pixels in its receptive field with a
vector that depends on the map but not on the receptive field:

am,i1,i2 = wT
mx̃

(i1,i2) where x(i1,i2) =

 xi1−H,i2−H · · · xi1−H,i2+H
...

...
xi1+H,i2−H · · · xi1+H,i2+H


and, as usual,

x̃(i1,i2) =

[
x(i1,i2)(:)

1

]
where the colon notation, borrowed from MATLAB, strings the entries of x(i1,i2) into a column vector.
Of course, the vector of all activations is still of the form

a =W x̃
2A stride s = 1 is not uncommon.

4

where x is a vector withD = N2 entries, but nowW is block-diagonal withM diagonal blocks—one
per feature map. Each block has size (N (1))2 × (N2 + 1) (the “+1” handles bias) and is sparse, with
only at most R2 + 1 nonzero weights in each row. Furthermore, the nonzero entries have the same
values in all the rows of the same block. Of course, the matrix W is not built explicitly.

This computation is called convolutional because when the stride is 1 each feature map is the convo-
lution (or more precisely the correlation) of the input array with the array of weights associated with
the map’s receptive field.3 The weights for a feature map are sometimes called the map’s kernel. The
(common) activation function h is then applied to each feature map to obtain the neural responses for
the layer.

As a result of this structure, the number of distinct parameters in W drops dramatically, from about
N4 toM(R2+1) for a black-and-white image and from about 9N4 to 3M(R2+1) for a color image,
where each color band gets a separate set of maps. For a 224 × 224 × 3-pixel color image and 96
maps each with an 11 × 11 receptive field, for instance [4], the drop is from about 22.7 billion to a
mere 35,136 parameters!

• Reduce the size of each feature map h(am(x)) by max-pooling. Specifically, square receptive fields
are defined in each feature map in turn, with a size and stride that is common to all the feature maps. A
new, smaller feature map is then computed whose values are each the maximum value in its receptive
field. If max-pooling is denoted by the function π(·), the output from the whole layer is4

y = hy(am(x)) = π(h(am(x))) .

In addition to reducing the size of the feature maps in y, max-pooling makes the output of the layer
somewhat less sensitive to the exact location of the features in the image. For instance, with a 3 × 3
receptive field for max-pooling, the output of the maximum is oblivious to which of those 32 acti-
vations produced the final output from the layer. In other words, max-pooling achieves some degree
of translation-invariance, and if the same is done in every layer of a deep network, the amounts of
invariance add up.

In one example [4] illustrated in Figure 3, the first layer of a convolutional net has a 224 × 224 color
image as input, so that the input dimensionality is D = 2242 × 3 = 150,528. There are 96 kernels, feature
maps, and response maps, 32 per color. The convolution kernels have receptive fields of size 11 × 11
pixels, so each output pixel in each color channel is computed from 112 + 1 = 122 input pixels which are
combined through 122 weights, including a bias value. The stride for computing activations is 4 pixels in
each direction, so the activation maps and feature maps are 54× 54 pixels each5. Max-pooling uses 3× 3-
pixel receptive fields and a stride of 2 pixels, and produces output maps of size 27× 27. Both map sizes are
computed from equation (2).

The set of activation maps computed by the 96 kernels is a 54 × 54 × 96 block, rather than a single
image, and max pooling is applied to each of the 96 slices in this block. If convolution is applied to the
resulting 27× 27× 96 output block from this layer, the convolution kernel is in general three-dimensional,
m × n × p, although p can be equal to 1 for an effectively two-dimensional kernel. In each of the three

3With a stride greater than 1, the feature map can be seen as the result of a convolution followed by sampling, although this
implementation would be inefficient.

4The function π is no longer R→ R.
5The paper itself [4] states that the activation maps have size 55× 55. I am not sure about the reason for this discrepancy.

5

input x

response maps h(a)
convolution

kernels

feature maps a

receptive field
of convolution

max pooling

output
y = π(h(a))

224

224

11

11

54
54

3
3 27

27

96
96

Figure 3: (Left) The structure of a convolutional neural-net layer. (Right) In the literature, neural nets with
many layers are drawn with each layer shown in a more compact way than on the left, although there is no
standard format. Typically, the maps are stacked in a block, as shown here, rather than drawn side-to-side.
Sometimes, max-pooling is only mentioned and not shown explicitly.

dimensions, convolution can be set up with one of the 'same', 'valid', or 'full' options we saw
when we studied convolution, thereby producing further blocks of activation maps of varying sizes.

For the layer in the Figure, the output dimensionality is D(1) = 272 × 96 = 69,984, a bit less than half
of the input dimensionality D = 2242 × 3 = 150,528. On the other hand, the map resolution decreases
more than eightfold, from 224 to 27 pixels on each side. The representation of the image has become more
abstract, changing from a pure pixel-by-pixel list of its colors to a coarser map of how much each of 32
features is present at each location in the image and in each color channel.

4 Deep Convolutional Neural Nets

The architecture of a neural-net layer embodies the principles of feature reuse, locality, and translation-
invariance. Deep Convolutional Neural Nets (CNNs) are CNNs with many layers, and reflect the principle
of hierarchy. After several convolutional layers, deep CNNs typically add one or a few fully-connected
layers, that is, layers where the weight matrix W is dense. The reasons for doing so are somewhat mixed
and not entirely compelling, but are nonetheless plausible: Far away from the input, spatial location is both
partially lost and relatively irrelevant to, say, recognition, so the local receptive fields of CNNs are no longer
useful. In addition, signals in late stages of a deep net have relatively low dimensionality, and one can then
better afford the greater representational flexibility that a fully-connected layer carries.

The output from a deep CNN is fed to a computation that depends on the purpose of the net. For
regression, for instance, the outputs may be used as they are. For classification, one could use the outputs as
inputs to a support vector machine or random forest or, if the classifier requires input quantities that behave
like probabilities, the output stage could be a softmax function,

z = σ(y) =
exp(y)

1T exp(y)

where 1 is a column vector of ones. Pragmatically speaking, the exponential makes all quantities positive,

6

and normalization makes sure the entries of z add up to 1. More formally6, the softmax function can be
viewed as a multidimensional generalization of the sigmoid function used in logistic regression [1]. The
reason why this function is called “softmax” is that if one of the yi entries, say yi0 , is much bigger than all
of the others, then 1T exp(y) ≈ exp(yi0), so that

zi0 ≈ 1 and zi ≈ 0 for i 6= i0 ,

and the function effectively acts as an indicator of the largest entry in y. Somewhat more precisely, and
quite obviously,

lim
α→∞

yTσ(αy) = max(y) .

In summary, a deep CNN performs the following computation:

x(0) = x

x(`) = π(h(W (`)x̃(`−1))) for ` = 1, . . . , Lc

x(`) = h(W (`)x̃(`−1)) for ` = Lc + 1, . . . , L

y = hy(x
(L))

where the output activation function hy may be the identity, softmax, or other function. The matrices W (`)

have D(`) rows and D(`−1) + 1 columns with D(0) = D and D(`) for ` > 0 being equal to the number of
outputs (or activations) in layer number `. The first Lc layers are convolutional and the remaining ones are
fully-connected.

References

[1] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[2] L. Deng and D. Yu. Deep Learning: Methods and Applications, volume 7(3-4) of Foundations and
Trends in Signal Processing. Now Publishers, 2014.

[3] V. Y. Kreinovic. Arbitrary nonlinearity is sufficient to represent all functions by neural networks: a
theorem. Neural Networks, 4:381–383, 1991.

[4] A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet classification with deep convolutional neural
networks. In Advances in Neural Information Processing Systems, volume 25, pages 1106–1114, 2012.

[5] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86(11):2278–2324, November 1998.

[6] S. Sonoda and N. Murata. Neural network with unbounded activations is universal approximator. Tech-
nical Report 1505.3654 [cs.NE], arXiv, 2015.

6But not necessarily more appropriately.

7

	Neurons
	Two-Layer Neural Nets
	Convolutional Layers
	Deep Convolutional Neural Nets

