
Function Optimization

Carlo Tomasi

There are three main reasons why most problems in robotics, vision, and arguably every other science
or endeavor take on the form of optimization problems. One is that the desired goal may not be achievable,
and so we try to get as close as possible to it. The second reason is that there may be more ways to achieve
the goal, and so we can choose one by assigning a quality to all the solutions and selecting the best one.
The third reason is that we may not know how to solve the system of equations f(x) = 0, so instead we
minimize the norm ‖f(x)‖, which is a scalar function of the unknown vector x.

The first two situations arise in the context of linear systems. The case in which a linear system admits
exactly one exact solution is simple but rare. More often, the system at hand is either incompatible (some
say overconstrained) or, at the opposite end, underdetermined. In fact, some problems are both, in a sense:
There is no exact solution, but there are several approximate ones, each equally good. In addition, many
problems lead to nonlinear equations.

Consider, for instance, the problem of Structure From Motion (SFM) in computer vision. Nonlinear
equations describe how points in the world project onto the images taken by cameras at given positions
in space. Structure from motion goes the other way around, and attempts to solve these equations: image
points are given, and one wants to determine shape and motion, namely, where the points in the world
and the cameras are. Because image points come from noisy measurements, they are not exact, and the
resulting system is usually incompatible. SFM is then cast as an optimization problem. At the same time,
even the exact system (one derived from perfect measurements through exact mathematics) is often close to
being underdetermined. For instance, the images may provide insufficient information to recover shape and
motion. Then, an additional criterion must be added to define what a “good” solution is. In these cases, the
noisy system admits no exact solutions, but has many approximate ones.

Machine learning is also optimization: A loss function defines the discrepancy between actual and
desired behavior of the function being learned, and optimization methods reduce the discrepancy by finding
the function parameters that minimize the loss over the inputs and outputs in the training set.

The term “optimization” is meant to subsume both minimization and maximization. However, maxi-
mizing the scalar function f(x) is the same as minimizing its negative −f(x), so we consider optimization
and minimization to be essentially synonyms. Usually, one is after global minima. However, global minima
are hard to find, since they involve a universal quantifier: x∗ is a global minimum of f if for every x we
have f(x) ≥ f(x∗). Global minization techniques like simulated annealing have been proposed, but their
convergence properties depend very strongly on the problem at hand. In this chapter, we consider local
minimization: we pick a starting point x0, and we descend in the landscape of f(x) until we cannot go
down any further. The bottom of the valley is a local minimum.

Local minimization is appropriate if we know how to pick an x0 that is close to x∗. This occurs fre-
quently in feedback systems. In these systems, we start at a local (or even a global) minimum. The system
then evolves and escapes from the minimum. As soon as this occurs, a control signal is generated to bring
the system back to the minimum. Because of this immediate reaction, the old minimum can often be used as
a starting point x0 when looking for the new minimum, that is, when computing the required control signal.

1



More formally, we reach the correct minimum x∗ as long as the initial point x0 is in the basin of attraction
of x∗, defined as the largest neighborhood of x∗ in which f(x) is convex.

If a good x0 is not available, one may have to be content with a local minimum x∗. After all, x∗ is
always at least as good, and often much better, than x0. A compromise is to pick several values for x0

(perhaps at random), compute the corresponding values for x∗, and then pick the one with the lowest value
f(x∗).

1 Choosing a Local Minimization Method

The large number of local minimization methods in the literature can be categorized in terms of how much
information about the function f they compute as they move from x0 through points x1,x2, . . . towards the
local minimum x∗. Specifically, some methods only look at the values f(xi), others compute its gradient,
and others yet compute the Hessian of f , that is, the matrix of its second derivatives with respect to x.

Higher derivatives provide approximate information about wider regions around the current point xi and
allow the algorithm to make larger steps in a good direction. For instance, the steepest descent method looks
at function value f(xi) and gradient ∇f(xi). All the method knows is the direction in which the function
decreases fastest at xi. It moves in that direction in the hope that f(xi+1) < f(xi), but needs some way
to figure out how long a step to take to make the decrease f(xi) − f(xi+1) as large as possible, or at least
reasonably large.

In contrast, Newton methods also compute the Hessian

Q =


∂2f
∂x21

· · · ∂2f
∂x1∂xn

...
...

∂2f
∂xn∂x1

· · · ∂2f
∂x2n


at xi. They can then approximate the function with a paraboloid and find its minimum xi+1 analytically,
by minimizing a quadratic equation in x. This minimum is not necessarily a minimum of f , because the
paraboloid only approximates this function, but then one repeats until convergence.

Newton steps are typically much larger than steepest-descent steps, and convergence is much faster.
However, each Newton step is more expensive, because of the need to compute the Hessian at every point.
For problems where the dimension n of the space in which x lives is small, the extra cost may be worth
the resulting smaller number of steps. However, the cost to compute Q increases quadratically with n,
so at some point Newton methods become overly expensive (in both time and storage) or even practically
infeasible.

In those cases, one can compute approximate Hessians, rather than exact ones, in Newton’s method,
leading to so-called quasi-Newton algorithms. Alternatively, one can modify the descent direction away
from the gradient in a way that effectively makes the steepest-descent algorithm aware of the second-order
derivatives of f . This idea leads to the conjugate gradients method, whose computational complexity is
similar to that of steepest descent and whose convergence rate approaches that of Newton’s method in many
cases.

Stochastic Gradient Descent (SGD) is a variant of steepest-descent that can be used for functions f that
are sums of many differentiable functions:

f(x) =
m∑
k=1

fk(x) .

2



In this case, SGD moves in the direction opposite to the gradient of the sum of a random subset (in an extreme
version, a singleton) of the fk terms at each iteration. Clearly, each step is (sometimes dramatically) less
expensive than a steepest-descent step. Interestingly, SGD can be shown to converge faster than steepest-
descent under suitable conditions, when convergence speed is measured as the total number of operations
required (rather than by the number of steps taken).

The next two sections introduce steepest descent and Newton’s method. Conjugate gradients is not going
to be used in this course, and is discussed for completeness in Appendix D. Stochastic gradient descent is
discussed in a separate note in the context of machine learning.

2 Local Minimization and Steepest Descent

Suppose that we want to find a local minimum for the scalar function f of the vector variable x, starting
from an initial point x0. Picking an appropriate x0 is crucial, but also very problem-dependent. We start
from x0, and we go downhill. At every step of the way, we must make the following decisions:

• Whether to stop.

• In what direction to proceed.

• How long a step to take.

In fact, most minimization algorithms have the following structure:

k = 0
while xk is not a minimum

compute step direction pk with ‖pk‖ = 1
compute step size αk
xk+1 = xk + αkpk
k = k + 1

end.

Different algorithms differ in how each of these instructions is performed.
It is intuitively clear that the choice of the step size αk is important. Too small a step leads to slow

convergence, or even to lack of convergence altogether. Too large a step causes overshooting, that is, leaping
past the solution. The most disastrous consequence of this is that we may leave the basin of attraction, or
that we oscillate back and forth with increasing amplitudes, leading to instability. Even when oscillations
decrease, they can slow down convergence considerably.

What is less obvious is that the best direction of descent is not necessarily, and in fact is quite rarely,
the direction of steepest descent. Appendix B shows this formally. More intuitively, figure 1 shows the
trajectory xk superimposed on a set of isocontours of a simple paraboloid (a quadratic function) f(x) for a
two-dimensional search space, that is, when x is a two-dimensional vector.

A paraboloid (whether in two or more dimensions) has equation

f(x) = c+ aTx +
1

2
xTQx (1)

where Q is a symmetric, positive definite matrix. Positive definite means that for every nonzero x the
quantity xTQx is positive. In this case, the graph of f(x) − c is a plane aTx plus a paraboloid. However,

3



Appendix B shows that adding a linear term aTx (and a constant c) to a paraboloid 1
2x

TQx merely shifts
the bottom of the paraboloid, both in position (x∗ rather than 0) and value (c− 1

2x
∗TQx∗ rather than zero).

Adding the linear term does not “warp” or “tilt” the shape of the paraboloid in any way.
Of course, if f were this simple, no descent methods would be necessary, because the minimum of f

can be found by setting its gradient to zero:

∂f

∂x
= a +Qx = 0

so that the minimum x∗ is the solution to the linear system

Qx = −a . (2)

Since Q is positive definite, it is also invertible (why?), and the solution x∗ is unique. However, under-
standing the behavior of minimization algorithms in this simple case is crucial in order to establish the
convergence properties of these algorithms for more general functions. This is because all smooth functions
can be approximated by paraboloids in a sufficiently small neighborhood of any point.

Let us therefore assume that we minimize f as given in equation (1), and that at every step we choose
the direction of steepest descent. Let us further assume that the length of the step is such that the minimum
of f along the steepest-descent direction is reached.

*

x
0

p
0

p
1

x

Figure 1: Trajectory of steepest descent.

Looking at Figure 1, we see that here is one good, but very precarious case in which convergence to the
true solution x∗ occurs blindingly fast, in a single step. This happens when the starting point x0 is at one
apex (tip of either axis) of an isocontour ellipse. In that case, the gradient points exactly towards x∗, and
one iteration will lead to the minimum x∗.

In all other cases, the line in the direction pk of steepest descent, which is orthogonal to the isocontour
at xk, will not pass through x∗. The minimum of f along that line is tangent to some other, lower isocontour
(or else it would not be a minimum, local or otherwise). The next step is orthogonal to the latter isocontour
(that is, parallel to the gradient). Thus, at every step the steepest descent trajectory is forced to make a
ninety-degree turn. If isocontours were circles (σ1 = σn) centered at x∗, then the first turn would make
the new direction point to x∗, and minimization would get there in just one more step. The more elongated
the isocontours, the farther away a line orthogonal to an isocontour passes from x∗, and the more steps
are required for convergence. This elongation is measured by the so-called condition number κ(Q) of Q,
defined in Appendix B.

4



Thus, the directions of steepest descent are typically poor directions, with the only exceptions of starting
at one of the axes of an isocontour ellipsoid or moving among hyperspheres rather than ellipsoids. Nonethe-
less, steepest descent is a popular optimization method because of its low cost per iteration, at the expense of
a large number of iterations (the next Section discusses convergence speed). The technique of precondition-
ing can improve things by deforming the function f(x) so that its isocontours look closer to hyperspheres.
This technique is beyond the scope of this introductory note.

To complete the steepest descent algorithm we need to specify two more of its aspects: (i) How to
determine the step size αk so at to reach the minimum of f(x) along the direction of pk; and (ii) how to
check whether a minimum of f (in any direction) has been reached.

Line Search is a method to find αk so that a minimum in the direction pk is reached. Here is how line
search works. Let

h(α) = f(xk + αpk) (3)

be the scalar function of one variable that is obtained by restricting the function f to the line through the
current point xk and in the direction of pk. Line search first determines two points a, c that bracket the
desired step size αk where f achieves a minimum, in the sense that a ≤ αk ≤ c, and then picks a point
between a and c, say, b = (a + c)/2. The only difficulty here is to find c. In fact, we can set a = 0,
corresponding through equation (3) to the starting point xk. A point c that is on the opposite side of the
minimum with respect to a can be found by increasing α through values α1 = a, α2, . . . until h(αi) is
greater than h(αi−1). Then, if we can assume that h is convex between α1 and αi, we can set c = αi. In
fact, the derivative of h at a is negative, so the function is initially decreasing, but it is increasing between
αi−1 and αi = c, so the minimum must be somewhere between a and c. Of course, if we cannot assume
convexity, we may find the wrong minimum, but there is no general-purpose fix to this problem.

Line search now proceeds by shrinking the bracketing triple (a, b, c) until c−a is smaller than the desired
accuracy in determining αk. Shrinking works as follows:

if b− a > c− b
u = (a+ b)/2
if f(u) > f(b)

(a, b, c) = (u, b, c)
otherwise

(a, b, c) = (a, u, b)
end

otherwise
u = (b+ c)/2
if f(u) > f(b)

(a, b, c) = (a, b, u)
otherwise

(a, b, c) = (b, u, c)
end

end.

It is easy to see that in each case the bracketing triple (a, b, c) preserves the property that f(b) ≤ f(a)
and f(b) ≤ f(c), and therefore the minimum is somewhere between a and c.

5



Each split reduces the size of the bracketing interval by at least a quarter. To see this, note that the extent
of the reduction is half the size of the longer interval. Therefore, the smallest reduction occurs when the
intervals [a, b] and [b, c] are equal in size, because then the longer interval is as short as it gets. In that case,
u is the half-point of [b, c]. If the new triple is (b, u, c), then its size is half that of the original triple (a, b, c).
If the new triple is (a, b, u), then its size is three quarters of the original. The latter is the worst case, and the
reduction is by 25 percent, as promised.

A slightly better performance can be achieved by placing point u not in the middle of the longer segment,
as done in the code above, but rather in such a way that at each iteration the ratio

r(a, b, c) =
max(b− a, c− b)
min(b− a, c− b)

between the length of the longer segment and that of the shorter segment in the bracketing triple is always
the same, and equal to

w =
1 +
√

5

2
≈ 1.618 ,

a number called the golden ratio. Appendix A shows that this can be achieved by an appropriate initial
placement of b and subsequent placement of u. With this strategy, the ratio between the length of the new
bracketing triple and the old is always1

w

1 + w
= w − 1 ≈ 0.618

rather than somewhere between 1/2 and 3/4. With this strategy, line search is called the golden ratio line
search. Either way, however, the bracketing triple shrinks exponentially fast.

Termination Check One criterion to check whether we are done with minimization is to verify whether
the value of f(xk) has significantly decreased from f(xk−1). Another is to check whether xk is significantly
different from xk−1. Close to the minimum, the derivatives of f are close to zero, so |f(xk) − f(xk−1)|
may be very small but ‖xk − xk−1‖ may still be relatively large. Thus, the check on xk is more stringent,
and therefore preferable in most cases. In fact, usually one is interested in the value of x∗, rather than in that
of f(x∗). In summary, the steepest descent algorithm can be stopped when

‖xk − xk−1‖ < ε

where the positive constant ε is provided by the user.

2.1 The Convergence Speed of Steepest Descent

How much closer does one step of steepest descent bring us to the solution x∗? In other words, how much
smaller is f(xk+1), relative to the value f(xk) at the previous step? The answer is, often not much, in a
sense made more precise by the following result, proven in Appendix C. While the result holds for quadratic
functions, any smooth function can be approximated by a quadratic function in small neighborhoods.

Theorem 2.1. Let
f(x) = c+ aTx +

1

2
xTQx

1The equality w/(1 + w) = w − 1 holds only for this particular value of w, not in general.

6



be a quadratic function of x, with Q symmetric and positive definite. For any x0, the method of steepest
descent has trajectory

xk+1 = xk −
gTk gk

gTkQgk
gk (4)

where

gk = g(xk) =
∂f

∂x

∣∣∣∣
x=xk

= a +Qxk .

This trajectory converges to the unique minimum point

x∗ = −Q−1a

of f . Furthermore, at every step k there holds

f(xk+1)− f(x∗) ≤
(
σ1 − σn
σ1 + σn

)2

(f(xk)− f(x∗))

where σ1 and σn are, respectively, the largest and smallest singular value of Q.

The ratio κ(Q) = σ1/σn is called the condition number of Q. The larger the condition number, the
closer the fraction (σ1 − σn)/(σ1 + σn) is to unity, and the slower convergence. When κ(Q) = 1, we have

σ1 − σn
σ1 + σn

= 0 .

and convergence is immediate. The more elongated the isocontours, that is, the greater the condition number
κ(Q), the farther away a line orthogonal to an isocontour passes from x∗, and the more steps are required
for convergence.

For general (that is, non-quadratic) f , the analysis above applies once xk gets close enough to the
minimum, so that f is well approximated by a paraboloid. In this case, Q is the matrix of second derivatives
of f with respect to x, and is called the Hessian of f . In summary, steepest descent is good for functions that
have a well conditioned Hessian near the minimum, but can become arbitrarily slow for poorly conditioned
Hessians.

To characterize the speed of convergence of different minimization algorithms, we introduce the notion
of the order of convergence. This is defined as the largest value of q for which the

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖q

is finite. If β is this limit, then close to the solution (that is, for large values of k) we have

‖xk+1 − x∗‖ ≈ β‖xk − x∗‖q

for a minimization method of order q. In other words, the distance of xk from x∗ is reduced by the q-th
power at every step, so the higher the order of convergence, the better. Theorem 2.1 implies that steepest
descent has at best a linear order of convergence. In fact, the residuals |f(xk)− f(x∗)| in the values of the
function being minimized converge linearly. Since the gradient of f approaches zero when xk tends to x∗,
the arguments xk to f can converge to x∗ even more slowly.

7



3 Newton’s Method

If a function can be well approximated by a paraboloid in the region in which minimization is performed, the
analysis in the previous section suggests a straight-forward fix to the slow convergence of steepest descent.
In fact, equation (2) tells us how to jump in one step from the starting point x0 to the minimum x∗. Of
course, when f(x) is not exactly a paraboloid, the new value x1 will be different from x∗. Consequently,
iterations are needed, but convergence can be expected to be faster. This is the idea of Newton’s method,
which we now summarize. Let

f(xk + ∆x) ≈ f(xk) + gTk ∆x +
1

2
∆xTQk∆x (5)

be the first terms of the Taylor series expansion of f about the current point xk, where

gk = g(xk) =
∂f

∂x

∣∣∣∣
x=xk

and

Qk = Q(xk) =
∂2f

∂x∂xT

∣∣∣∣
x=xk

=


∂2f
∂x21

· · · ∂2f
∂x1∂xn

...
...

∂2f
∂xn∂x1

· · · ∂2f
∂x2n


x=xk

are the gradient and Hessian of f evaluated at the current point xk. Notice that even when f is a paraboloid,
the gradient gk is different from a as used in equation (1). This is because a andQ are the coefficients of the
Taylor expansion of f around point x = 0, while gk and Qk are the coefficients of the Taylor expansion of
f around the current point xk. In other words, gradient and Hessian are constantly reevaluated in Newton’s
method.

To the extent that approximation (5) is valid, we can set the derivatives of f(xk + ∆x) with respect to
∆x to zero, and obtain, analogously to equation (2), the linear system

Qk∆x = −gk , (6)

whose solution ∆xk = αkpk yields at the same time the step direction pk = ∆xk/‖∆xk‖ and the step
size αk = ‖∆xk‖. The direction is of course undefined once the algorithm has reached a minimum, that is,
when αk = 0.

A minimization algorithm in which the step direction pk and size αk are defined in this manner is called
Newton’s method. The corresponding pk is termed the Newton direction, and the step defined by equation
(6) is the Newton step.

The greater speed of Newton’s method over steepest descent is borne out by analysis: while steepest
descent has a linear order of convergence, Newton’s method is quadratic. To see this, let

y(x) = x−Q(x)−1g(x)

be the place reached by a Newton step starting at x (see equation (6)), and suppose that at the minimum x∗

the Hessian Q(x∗) is nonsingular. Then
y(x∗) = x∗

because g(x∗) = 0, and
xk+1 − x∗ = y(xk)− x∗ = y(xk)− y(x∗) .

8



From the mean-value theorem, we have

‖xk+1 − x∗‖ = ‖y(xk)− y(x∗)‖ ≤
∥∥∥∥[ ∂y∂xT

]
x=x∗

(xk − x∗)

∥∥∥∥+
1

2

∣∣∣∣ ∂2y

∂x∂xT

∣∣∣∣
x=x̂

‖xk − x∗‖2

where x̂ is some point on the line between x∗ and xk. Since y(x∗) = x∗, the first derivatives of y at x∗ are
zero, so that the first term in the right-hand side above vanishes, and

‖xk+1 − x∗‖ ≤ c ‖xk − x∗‖2

where c depends on third-order derivatives of f near x∗. Thus, the convergence rate of Newton’s method is
of order at least two.

For a quadratic function, as in equation (1), steepest descent takes many steps to converge, while New-
ton’s method reaches the minimum in one step. However, this single iteration in Newton’s method is more
expensive, because it requires both the gradient gk and the Hessian Qk to be evaluated, for a total of n+

(
n
2

)
derivatives. In addition, the Hessian must be inverted, or, at least, system (6) must be solved. For very large
problems, in which the dimension n of x is thousands or more, storing and manipulating a Hessian can be
prohibitive. In contrast, steepest descent requires the gradient gk for selecting the step direction pk, and a
line search in the direction pk to find the step size.

Appendices

A The Golden Ratio Line Search

We show that the breakpoint u for line search can be chosen so that at each iteration the ratio

r(a, b, c) =
max(b− a, c− b)
min(b− a, c− b)

between the length of the longer segment and that of the shorter segment in the bracketing triple is the same.
To find how to do this, let us reason for the case b− a < c− b, illustrated in Figure 2. The reasoning for the
opposite case is analogous.

a b cu
α β

γ

Figure 2: If points b and u are placed so that the ratio w = β/α equals the ratio α/γ, then we also have
(β − γ)/γ = w, and w ≈ 1.618 remains the same at every iteration of line search.

From the code for line search, we see that u splits the interval [b, c], the longer of the two. Before the
split, if we let

α = b− a and β = c− b

9



we thus have
r(a, b, c) =

β

α
.

After the split, the triple is either (a, b, u) or (b, u, c). Choose u so that

γ = u− b < α and γ = u− b < c− u = β − γ .

Then
r(a, b, u) =

α

γ
and r(b, u, c) =

β − γ
γ

.

Requiring the ratio r to be the same before and after the split in all cases requires

r(a, b, c) = r(a, b, u) and r(a, b, c) = r(b, u, c) that is,
β

α
=
α

γ
and

β

α
=
β − γ
γ

.

Solving these two equations for γ yields

γ =
α2

β
=

αβ

α+ β

and therefore, after simple algebra,

w =
1 + w

w
where w =

β

α
.

Rearranging terms yields the quadratic equation

w2 − w − 1 = 0

which has a solution that is greater than 1 and one that is less than 1. Since w > 1, we obtain

w =
1 +
√

5

2
≈ 1.618 ,

a number called the golden ratio.
Thus, if b is initially placed between a and c so that

r(a, b, c) =
c− b
b− a

= w

and then, when the interval [b, c] is split, the breakpoint u is placed so that

r(b, u, c) =
c− u
b− u

= w ,

we automatically also obtain that

r(a, b, u) =
b− a
u− b

= w .

The reasoning for the case b− a > c− b is similar and is left as an exercise.

10



B Steepest Descent on a Paraboloid

This Appendix finds exact formulas for steepest descent when f is a paraboloid. This study will then lead
to an analysis of the convergence speed of this optimization method (Appendix C).

Let
ẽ(x) =

1

2
(x− x∗)TQ(x− x∗) .

Then we have
ẽ(x) = f(x)− c+

1

2
x∗TQx∗ = f(x)− f(x∗) (7)

so that ẽ and f differ only by a constant. To show this, we note that the definition of x∗ means that

Qx∗ = −a

and so
−xTQx∗ = xTa = aTx

and therefore

ẽ(x) =
1

2
(xTQx + x∗TQx∗ − 2xTQx∗) =

1

2
xTQx + aTx +

1

2
x∗TQx∗ = f(x)− c+

1

2
x∗TQx∗ .

We can also write

f(x∗) = c+ aTx∗ +
1

2
x∗TQx∗ = c− x∗TQx∗ +

1

2
x∗TQx∗ = c− 1

2
x∗TQx∗ .

The result (7),
ẽ(x) = f(x)− f(x∗) ,

is rather interesting in itself. It says that adding a linear term aTx (and a constant c) to a paraboloid 1
2x

TQx

merely shifts the bottom of the paraboloid, both in position (x∗ rather than 0) and value (c − 1
2x
∗TQx∗

rather than zero). Adding the linear term does not “warp” or “tilt” the shape of the paraboloid in any way.
Since ẽ is simpler, we consider that we are minimizing ẽ rather than f . In addition, we can let

y = x− x∗ ,

that is, we can shift the origin of the domain to x∗, and study the function

e(y) =
1

2
yTQy

instead of f or ẽ, without loss of generality. We will transform everything back to f and x once we are done.
Of course, by construction, the new minimum is at

y∗ = 0

where e reaches a value of zero:
e(y∗) = e(0) = 0 .

However, we let our steepest descent algorithm find this minimum by starting from the initial point

y0 = x0 − x∗ .

11



At every iteration k, the algorithm chooses the direction of steepest descent, which is in the direction

pk = − gk
‖gk‖

opposite to the gradient of e evaluated at yk:

gk = g(yk) =
∂e

∂y

∣∣∣∣
y=yk

= Qyk .

We select for the algorithm the most favorable step size, that is, the one that takes us from yk to the
lowest point in the direction of pk. This can be found by differentiating the function

e(yk + αpk) =
1

2
(yk + αpk)

TQ(yk + αpk)

with respect to α, and setting the derivative to zero to obtain the optimal step αk. We have

∂e(yk + αpk)

∂α
= (yk + αpk)

TQpk

and setting this to zero yields

αk = −(Qyk)
Tpk

pTkQpk
= −

gTk pk

pTkQpk
= ‖gk‖

pTk pk

pTkQpk
= ‖gk‖

gTk gk

gTkQgk
. (8)

Thus, the basic step of our steepest descent can be written as follows:

yk+1 = yk + ‖gk‖
gTk gk

gTkQgk
pk

that is,

yk+1 = yk −
gTk gk

gTkQgk
gk . (9)

C Proof of Theorem 2.1

This Appendix proves the main result on the convergence speed of steepest descent. The arguments and
proofs below are adapted from D. G. Luenberger, Introduction to Linear and Nonlinear Programming,
Addison-Wesley, 1973, and are based on the following preliminary result.

Lemma C.1 (Kantorovich inequality). LetQ be a positive definite, symmetric, n×n matrix. For any vector
y there holds

(yTy)2

yTQ−1y yTQy
≥ 4σ1σn

(σ1 + σn)2

where σ1 and σn are, respectively, the largest and smallest singular values of Q.

12



Proof. Let
Q = UΣUT

be the singular value decomposition of the symmetric (hence V = U ) matrix Q. Because Q is positive
definite, all its singular values are strictly positive, since the smallest of them satisfies

σn = min
‖y‖=1

yTQy > 0

by the definition of positive definiteness. If we let

z = UTy

we have

(yTy)2

yTQ−1y yTQy
=

(yTUTUy)2

yTUΣ−1UTy yTUΣUTy
=

(zT z)2

zTΣ−1z zTΣz
=

1/
∑n

i=1 θiσi∑n
i=1 θi/σi

=
φ(σ)

ψ(σ)
(10)

where the coefficients

θi =
z2i
‖z‖2

add up to one. If we let

σ =

n∑
i=1

θiσi , (11)

then the numerator φ(σ) in (10) is 1/σ. Of course, there are many ways to choose the coefficients θi to
obtain a particular value of σ. However, each of the singular values σj can be obtained by letting θj = 1 and
all other θi to zero. Thus, the values 1/σj for j = 1, . . . , n are all on the curve 1/σ. The denominator ψ(σ)
in (10) is a convex combination of points on this curve. Since 1/σ is a convex function of σ, the values of
the denominator ψ(σ) of (10) must be in the shaded area in figure 3. This area is delimited from above by
the straight line that connects point (σ1, 1/σ1) with point (σn, 1/σn), that is, by the line with ordinate

λ(σ) = (σ1 + σn − σ)/(σ1σn) .

For the same vector of coefficients θi, the values of φ(σ), ψ(σ), and λ(σ) are on the vertical line
corresponding to the value of σ given by (11). Thus an appropriate bound is

φ(σ)

ψ(σ)
≥ min

σ1≤σ≤σn

φ(σ)

λ(σ)
= min

σ1≤σ≤σn

1/σ

(σ1 + σn − σ)/(σ1σn)
.

The minimum is achieved at σ = (σ1 + σn)/2, yielding the desired result. ∆

Thanks to this lemma, we can now prove Theorem 2.1 on the convergence of the method of steepest
descent. The theorem is restated here for convenience.

Let
f(x) = c+ aTx +

1

2
xTQx

be a quadratic function of x, with Q symmetric and positive definite. For any x0, the method of steepest
descent has trajectory

xk+1 = xk −
gTk gk

gTkQgk
gk (12)

13



σ σ σ σ
21 n

σ

φ,ψ,λ

ψ(σ)

φ(σ)

λ(σ)

Figure 3: Kantorovich inequality.

where

gk = g(xk) =
∂f

∂x

∣∣∣∣
x=xk

= a +Qxk .

This trajectory converges to the unique minimum point

x∗ = −Q−1a

of f . Furthermore, at every step k there holds

f(xk+1)− f(x∗) ≤
(
σ1 − σn
σ1 + σn

)2

(f(xk)− f(x∗))

where σ1 and σn are, respectively, the largest and smallest singular value of Q.
Proof. From the definition of e and from equation (9) we obtain

e(yk)− e(yk+1)

e(yk)
=

yTkQyk − yTk+1Qyk+1

yTkQyk

=
yTkQyk −

(
yk −

gT
k gk

gT
k Qgk

gk

)T
Q
(
yk −

gT
k gk

gT
k Qgk

gk

)
yTkQyk

=
2

gT
k gk

gT
k Qgk

gTkQyk −
(

gT
k gk

gT
k Qgk

)2
gTkQgk

yTkQyk

=
2gTk gkg

T
kQyk − (gTk gk)

2

yTkQyk g
T
kQgk

.

Since Q is invertible we have

gk = Qyk ⇒ yk = Q−1gk

and
yTkQyk = gTkQ

−1gk

14



so that
e(yk)− e(yk+1)

e(yk)
=

(gTk gk)
2

gTkQ
−1gk g

T
kQgk

.

This can be rewritten as follows by rearranging terms:

e(yk+1) =

(
1−

(gTk gk)
2

gTkQ
−1gk g

T
kQgk

)
e(yk) (13)

We can now use the lemma on the Kantorovich inequality proven earlier to bound the expression in
parentheses and therefore the rate of convergence of steepest descent. From the definitions

y = x− x∗ and e(y) =
1

2
yTQy (14)

we immediately obtain the expression for steepest descent in terms of f and x. By equations (7) and (13)
and the Kantorovich inequality we obtain

f(xk+1)− f(x∗) = e(yk+1) =

(
1−

(gTk gk)
2

gTkQ
−1gk g

T
kQgk

)
e(yk) ≤

(
1− 4σ1σn

(σ1 + σn)2

)
e(yk) (15)

=

(
σ1 − σn
σ1 + σn

)2

(f(xk)− f(x∗)) . (16)

Since the ratio in the last term is smaller than one, it follows immediately that f(xk) − f(x∗) → 0 and
hence, since the minimum of f is unique, that xk → x∗. ∆

D Conjugate Gradients

The method of conjugate gradients, discussed in this appendix, is motivated by the desire to accelerate
convergence with respect to the steepest descent method, but without paying the storage cost of Newton’s
method.

Newton’s method converges faster (quadratically) than steepest descent (linear convergence rate) be-
cause it uses more information about the function f being minimized. Steepest descent locally approximates
the function with planes, because it only uses gradient information. All it can do is to go downhill. Newton’s
method approximates f with paraboloids, and then jumps at every iteration to the lowest point of the current
approximation. The bottom line is that fast convergence requires work that is equivalent to evaluating the
Hessian of f .

Prima facie, the method of conjugate gradients discussed in this section seems to violate this principle:
it achieves fast, superlinear convergence, similarly to Newton’s method, but it only requires gradient infor-
mation. This paradox, however, is only apparent. Conjugate gradients works by taking n steps for each of
the steps in Newton’s method. It effectively solves the linear system (2) of Newton’s method, but it does so
by a sequence of n one-dimensional minimizations, each requiring one gradient computation and one line
search.

Overall, the work done by conjugate gradients is equivalent to that done by Newton’s method. However,
system (2) is never constructed explicitly, and the matrix Q is never stored. This is very important in

15



cases where x has thousands or even millions of components. These high-dimensional problems arise
typically from the discretization of partial differential equations. Say for instance that we want to compute
the motion of points in an image as a consequence of camera motion. Partial differential equations relate
image intensities over space and time to the motion of the underlying image features. At every pixel in
the image, this motion, called the motion field, is represented by a vector whose magnitude and direction
describe the velocity of the image feature at that pixel. Thus, if an image has, say, a quarter of a million
pixels, there are n = 500, 000 unknown motion field values. Storing and inverting a 500, 000 × 500, 000
Hessian is out of the question. In cases like these, conjugate gradients saves the day.

The conjugate gradients method described in these notes is the so-called Polak-Ribière variation. It
will be introduced in three steps. First, it will be developed for the simple case of minimizing a quadratic
function with positive-definite and known Hessian. This quadratic function f(x) was introduced in equation
(1). We know that in this case minimizing f(x) is equivalent to solving the linear system (2). Rather than an
iterative method, conjugate gradients is a direct method for the quadratic case. This means that the number
of iterations is fixed. Specifically, the method converges to the solution in n steps, where n is the number
of components of x. Because of the equivalence with a linear system, conjugate gradients for the quadratic
case can also be seen as an alternative method for solving a linear system, although the version presented
here will only work if the matrix of the system is symmetric and positive definite.

Second, the assumption that the Hessian Q in expression (1) is known will be removed. As discussed
above, this is the main reason for using conjugate gradients.

Third, the conjugate gradients method will be extended to general functions f(x). In this case, the
method is no longer direct, but iterative, and the cost of finding the minimum depends on the desired ac-
curacy. This occurs because the Hessian of f is no longer a constant, as it was in the quadratic case. As a
consequence, a certain property that holds in the quadratic case is now valid only approximately. In spite
of this, the convergence rate of conjugate gradients is superlinear, somewhere between Newton’s method
and steepest descent. Finding tight bounds for the convergence rate of conjugate gradients is hard, and we
will omit this proof. We rely instead on the intuition that conjugate gradients solves system (2), and that
the quadratic approximation becomes more and more valid as the algorithm converges to the minimum. If
the function f starts to behave like a quadratic function early, that is, if f is nearly quadratic in a large
neighborhood of the minimum, convergence is fast, as it requires close to the n steps that are necessary in
the quadratic case, and each of the steps is simple. This combination of fast convergence, modest storage re-
quirements, and low computational cost per iteration explains the popularity of conjugate gradients methods
for the optimization of functions of a large number of variables.

D.1 The Quadratic Case

Suppose that we want to minimize the quadratic function

f(x) = c+ aTx +
1

2
xTQx (17)

where Q is a symmetric, positive definite matrix, and x has n components. As we saw in our discussion of
steepest descent, the minimum x∗ is the solution to the linear system

Qx = −a . (18)

We know how to solve such a system. However, all the methods we have seen so far involve explicit
manipulation of the matrix Q. We now consider an alternative solution method that does not need Q, but

16



only the quantity
gk = Qxk + a

that is, the gradient of f(x), evaluated at n different points x1, . . . ,xn. We will see that the conjugate
gradients method requires n gradient evaluations and n line searches in lieu of each n× n matrix inversion
in Newton’s method.

Formal proofs can be found in Elijah Polak, Optimization — Algorithms and consistent approximations,
Springer, NY, 1997. The arguments offered below appeal to intuition.

Consider the case n = 3, in which the variable x in f(x) is a three-dimensional vector. Then the
quadratic function f(x) is constant over ellipsoids, called isosurfaces, centered at the minimum x∗. How
can we start from a point x0 on one of these ellipsoids and reach x∗ by a finite sequence of one-dimensional
searches? In connection with steepest descent, we noticed that for poorly conditioned Hessians orthogonal
directions lead to many small steps, that is, to slow convergence.

When the ellipsoids are spheres, on the other hand, this works much better. The first step takes from x0

to x1, and the line between x0 and x1 is tangent to an isosurface at x1. The next step is in the direction of
the gradient, so that the new direction p1 is orthogonal to the previous direction p0. This would then take us
to x∗ right away. Suppose however that we cannot afford to compute this special direction p1 orthogonal to
p0, but that we can only compute some direction p1 orthogonal to p0 (there is an n− 1-dimensional space
of such directions!). It is easy to see that in that case n steps will take us to x∗. In fact, since isosurfaces are
spheres, each line minimization is independent of the others: The first step yields the minimum in the space
spanned by p0, the second step then yields the minimum in the space spanned by p0 and p1, and so forth.
After n steps we must be done, since p0 . . . ,pn−1 span the whole space.

In summary, any set of orthogonal directions, with a line search in each direction, will lead to the
minimum for spherical isosurfaces. Given an arbitrary set of ellipsoidal isosurfaces, there is a one-to-one
mapping with a spherical system: if Q = UΣUT is the SVD of the symmetric, positive definite matrix Q,
then we can write

1

2
xTQx =

1

2
yTy

where
y = Σ1/2UTx . (19)

Consequently, there must be a condition for the original problem (in terms ofQ) that is equivalent to orthog-
onality for the spherical problem. If two directions qi and qj are orthogonal in the spherical context, that is,
if

qTi qj = 0 ,

what does this translate into in terms of the directions pi and pj for the ellipsoidal problem? We have

qi,j = Σ1/2UTpi,j ,

so that orthogonality for qi,j becomes

pTi UΣ1/2Σ1/2UTpj = 0

or
pTi Qpj = 0 . (20)

This condition is called Q-conjugacy, or Q-orthogonality: if equation (20) holds, then pi and pj are said to
be Q-conjugate or Q-orthogonal to each other. We will henceforth simply say “conjugate” for brevity.

17



In summary, if we can find n directions p0, . . . ,pn−1 that are mutually conjugate, and if we do line
minimization along each direction pk, we reach the minimum in at most n steps. Of course, we cannot use
the transformation (19) in the algorithm, because Σ and especially UT are too large. So now we need to find
a method for generating n conjugate directions without using either Q or its SVD. We do this in two steps.
First, we find conjugate directions whose definitions do involve Q. Then, in the next subsection, we rewrite
these expressions without Q.

Here is the procedure, due to Hestenes and Stiefel (Methods of conjugate gradients for solving linear
systems, J. Res. Bureau National Standards, section B, Vol 49, pp. 409-436, 1952), which also incorporates
the steps from x0 to xn:

g0 = g(x0)
p0 = −g0
for k = 0 . . . , n− 1
αk = arg minα≥0 f(xk + αpk)
xk+1 = xk + αkpk
gk+1 = g(xk+1)

γk =
gT
k+1Qpk

pT
kQpk

pk+1 = −gk+1 + γkpk
end

where

gk = g(xk) =
∂f

∂x

∣∣∣∣
x=xk

is the gradient of f at xk.
It is simple to see that pk and pk+1 are conjugate. In fact,

pTkQpk+1 = pTkQ(−gk+1 + γkpk)

= −pTkQgk+1 +
gTk+1Qpk

pTkQpk
pTkQpk

= −pTkQgk+1 + gTk+1Qpk = 0 .

It is somewhat more cumbersome to show that pi and pk+1 for i = 0, . . . , k are also conjugate. This can be
done by induction. The proof is based on the observation that the vectors pk are found by a generalization of
the Gram-Schmidt orthogonalization method to produce conjugate rather than orthogonal vectors. Details
can be found in Polak’s book mentioned earlier.

D.2 Removing the Hessian

The algorithm shown in the previous subsection is a correct conjugate gradients algorithm. However, it is
computationally inadequate because the expression for γk contains the Hessian Q, which is too large. We
now show that γk can be rewritten in terms of the gradient values gk and gk+1 only. To this end, we notice
that

gk+1 = gk + αkQpk ,

or
αkQpk = gk+1 − gk .

18



In fact,
g(x) = a +Qx

so that
gk+1 = g(xk+1) = g(xk + αkpk) = a +Q(xk + αkpk) = gk + αkQpk .

We can therefore write

γk =
gTk+1Qpk

pTkQpk
=

gTk+1αkQpk

pTk αkQpk
=

gTk+1(gk+1 − gk)

pTk (gk+1 − gk)
,

and Q has disappeared.
This expression for γk can be further simplified by noticing that

pTk gk+1 = 0

because the line along pk is tangent to an isosurface at xk+1, while the gradient gk+1 is orthogonal to the
isosurface at xk+1. Similarly,

pTk−1gk = 0 .

Then, the denominator of γk becomes

pTk (gk+1 − gk) = −pTk gk = (gk − γk−1pk−1)Tgk = gTk gk .

In conclusion, we obtain the Polak-Ribière formula

γk =
gTk+1(gk+1 − gk)

gTk gk
.

D.3 Extension to General Functions

We now know how to minimize the quadratic function (17) in n steps, without ever constructing the Hessian
explicitly. When the function f(x) is arbitrary, the same algorithm can be used.

However, n iterations will not suffice. In fact, the Hessian, which was constant for the quadratic case,
now is a function of xk. Strictly speaking, we then lose conjugacy, since pk and pk+1 are associated to
different Hessians. However, as the algorithm approaches the minimum x∗, the quadratic approximation
becomes more and more valid, and a few cycles of n iterations each will achieve convergence.

19


	Choosing a Local Minimization Method
	Local Minimization and Steepest Descent
	The Convergence Speed of Steepest Descent

	Newton's Method
	The Golden Ratio Line Search
	Steepest Descent on a Paraboloid
	Proof of Theorem 2.1
	Conjugate Gradients
	The Quadratic Case
	Removing the Hessian
	Extension to General Functions


