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It is often useful to analyze an image I(x) at different scales. One can then form a stack of images
obtained by repeatedly blurring the input image:

B0 = I

B` = B`−1 ∗ Sσ for ` = 1, . . . , L (1)

where Sσ(x) is a smoothing kernel, typically a Gaussian with width σ, and the symbol ’∗’ denotes convolu-
tion. The larger σ, the more high-frequency information (that is, fine detail) is suppressed at every level of
smoothing, and analysis of B` reveals finer or coarser structures in the image depending on the value of the
level `. Figure 1 shows the result of blurring an input image L = 7 times with a Gaussian kernel with σ = 2
pixels. Note the loss of detail at higher levels (` > 0) of the stack.

Figure 1: A Gaussian stack.

The convolution of a Gaussian with parameter σ1 with another Gaussian with parameter σ2 is a Gaus-
sian with parameter σ =

√
σ21 + σ22 . Because of this, convolving an image ` times with a Gaussian with

parameter σ is the same as convolving the same image once with a Gaussian with parameter

σ` =
√
`σ
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for each `. So we can also write

B0 = I

B` = B0 ∗ Sσ` for ` = 1, . . . , L .

Of course, the iterative smoothing procedure (1) is more efficient, because the kernels are smaller.
The pixel resolution of the images in the stack is high when compared to the spatial frequencies con-

tained in the images for ` > 0: There are many pixels even if the image brightness changes slowly. Because
of this, the blurred images B` can be sampled after filtering without significant loss of information. Without
getting into the quantitative aspects of sampling and image bandwidth, it turns out that most of the image
information is preserved if every time the image is blurred with a Gaussian filter with parameter σ, the image
is subsampled by a factor of about σ/1.6.

When s = σ/1.6 is an integer number, it is clear what this means: Filter with a Gaussian with parameter
σ, then retain every s-th pixel in each dimension. When s is not an integer, on the other hand, sampling
“every s pixels” entails retrieving image values between the values available in the image array. This can be
done by sub-pixel interpolation, which requires a model for the continuous image that the array values are
samples of. One of the simplest such models is the bilinear one, in which the underlying continuous image
I(x) is assumed to be separately linear in x and y, the two components of x, between integer values of the
coordinates. This model leads to bilinear interpolation: Let x = (x, y), and (with b·c denoting the floor
function)

ξ = bxc , η = byc
∆x = x− ξ , ∆y = y − η .

Then,

I(x) = I(ξ, η) (1−∆x) (1−∆y)

+ I(ξ + 1, η) ∆x (1−∆y)

+ I(ξ, η + 1) (1−∆x) ∆y

+ I(ξ + 1, η + 1) ∆x∆y .

We can now sample the image I with any sampling period, integer or otherwise.
We encapsulate the operations of filtering followed by sampling into a single function

B = resize(I, φ)

where the downsampling factor φ = 1/s is a positive real number that denotes the ratio between the size of
B and that of I . For values 0 < φ < 1, the image shrinks. For φ > 1, no filtering is performed, and the
image grows larger. The filter in downsampling is Gaussian with parameter

σ = 1.6/φ .

Figure 2 shows an example of the effects of resizing an image with and without smoothing. To make the
differences more obvious, a large sampling factor was used. This Figure shows that if an image is sampled
without first blurring it, neighboring pixels in the reduced-size image may com from parts of the image
that have nothing to do with each other in the scene, and this leads to the disorganized appearance in panel
(b) of the Figure. Blurring ensures that each sampled pixel summarizes the average values in an image
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(a)

(b) (c)

Figure 2: An illustration of aliasing. The image in (a) was just resampled in (b) and instead downsized by
blurring and resampling in (c). The original image has 2448 × 3264 pixels, and is not shown to scale with
the other two images. For both (b) and (c), the sampling factor is φ = 1/30.
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neighborhood that matches the sampling factor. While the reduced-size image in (c) is blurred relative to
the original in (a), whatever information is left is more clearly related to the original. The phenomenon that
degrades the image in (b) is called aliasing in the literature.

Replacing convolution with Sσ with resize(·, φ) where 0 < φ < 1 in equation (1) yields the Gaussian
pyramid:

G0 = I

G` = down(G`−1) for ` = 1, . . . , L . (2)

In the last expression, we think of fixing φ to some value between 0 and 1 (for instance, φ = 1/2) and define

down(X) = resize(X,φ) .

We will later also need
up(X) = resize(X, 1/φ)

where “down” and “up” use the same value of φ. These two operations are called downsampling and
upsampling. There is a crucial difference between the two: Downsampling blurs the input image with a
Gaussian and then samples it by bilinear interpolation to make it smaller. Upsampling merely resamples the
input image on a finer grid, but it does not undo the blurring, and the extra pixel values in up(X) are merely
“made up” by bilinear interpolation. So X and up(X) contain the same frequencies (same level of detail),
but the latter has more pixels than the former.

Since the image shrinks at each level, it is no longer necessary to specify the maximum level L: once
the image shrinks to a single pixel (about blog1/φ(min(R,C))c − 1 steps, where R and C are the number
of rows and columns of I), the procedure stops.

Figure 3 shows the Gaussian pyramid for the same input image used for the Gaussian stack in Figure 1
and for φ = 1/2. The input image has R = 365 rows and C = 384 columns, and the pyramid has L = 7
levels (plus the input image itself).

The Gaussian pyramid is said to be a lowpass pyramid, in that every level contains all the image fre-
quencies below some value, roughly proportional to φ`. In contrast, the Laplacian pyramid is a bandpass
pyramid, in that every level contains the image frequencies around a value that is roughly proportional to
φ`.

The Laplacian pyramid contains exactly the same information as the input image, and from which the
input image can be reconstructed exactly (up to numerical rounding). The Laplacian pyramid takes two
consecutive imagesG` andG`+1 from the Gaussian pyramid, upsamplesG`+1, and makesH` the difference
between G` and the upsampled G`+1:

H` = G` − up(G`+1) .

The image G` contains frequencies below Fφ` (where F is the highest frequencies in the original image I),
while up(G`+1) (or G`+1, which has the same information but the wrong size) contains frequencies below
Fφ`+1, so their difference H` would contain frequencies between Fφ`+1 and Fφ`, that is, the image detail
at frequencies in this band. This process is repeated until, after L levels, one obtains a bandpass image HL.
An additional, tiny lowpass image GL+1 is computed as down(GL) and stored with the Laplacian pyramid.

To reconstruct the original image from the Laplacian pyramid, we note that G` can be reconstructed
exactly from G`+1 and H`, since the last equation can be solved for G` to obtain he following:

G` = H` + up(G`+1) .
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Figure 3: A Gaussian pyramid.

Here then is the algorithm for computing the Laplacian pyramid (see Figure 5 (left)). First, set

G← I .

Then, while G′ is large enough, repeat the following for ` = 1, 2, . . .:

G′ ← down(G)

H` ← G− up(G′)

G ← G′ .

The remaining image G is the lowpass residual GL+1.
Figure 4 shows the Laplacian pyramid for the same image input image as in Figure 1 and for φ = 1/2.

To reconstruct the image from the Laplacian pyramid, we work backwards:

I ← GL+1

and for ` = L, . . . , 1:
I ← up(I) +H`

A small caveat: because of rounding, up(I) may not yield exactly the desired image size. Because of this,
we overload the definition of the up function to take as second argument the desired size of the output image
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Figure 4: A Laplacian pyramid. Pixel values are positive and negative, and gray denotes zero.

instead of the scaling factor, and the last assignment becomes

I ← up(I, size(H`)) +H` .

Figure 5 shows computation of the Laplacian pyramid and reconstruction of the image from it in schematic
form.
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Figure 5: Construction of the Laplacian pyramid (left) and its inverse (right). The column of down operators
on the left in the left picture computes a Gaussian pyramid, which is however discarded, except for the very
last image.
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