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1 Classification Trees

A classification tree represents the probability spaceP of posterior probabilities p(y|x) of label given feature
by a recursive partition of the feature space X , where each partition is performed by a test on the feature
x. Each such test is called a split rule. Since the partition is recursive, the split rules can be arranged into a
tree.

The split rules are learned by partitioning the training set T recursively in a way that increases the purity
of the subsets formed by each split. A set is pure if one of the labels dominate the others in the set, in a sense
to be made more precise later on. To each set of the partition is assigned a posterior probability distribution,
and p(y|x) for a training or test feature x ∈ X is then defined as the probability distribution associated with
the set of the partition that contains x.

A popular binary split rule called a 1-rule partitions a subset1 S ⊆ X × Y into the two sets

L = {(x, y) ∈ S |xd ≤ t} and R = {(x, y) ∈ S |xd > t} (1)

where xd is the d-th component of x and t is a real number. This note considers only binary classification
trees2 with 1-rule splits, and the word “binary” is omitted in what follows.

Concretely, the split rules are placed on the interior nodes of a binary tree and the probability distri-
butions are on the leaves. The tree τ can be defined recursively as either a single (leaf) node with values
of the posterior probability p(y|x) collected in a vector τ.p or an (interior) node with a split function with
parameters τ.d and τ.t that returns either the left or the right descendant (τ.L or τ.R) of τ depending on the
outcome of the split. A classification tree τ then takes a new feature x, looks up its posterior in the tree by
following splits in τ down to a leaf, and returns the MAP estimate, as summarized in Algorithm 1.

1.1 Training Classification Trees

Optimal training of a classification tree would compute the partition of X that leads to the lowest possible
generalization error. In addition, a good tree from a computational point of view would use the minimum
possible number of splits. The second requirement, optimal efficiency, is unrealistic, since building the most
efficient tree is NP-complete, as was proven by a reduction of the set cover problem [9].

Classification trees are typically trained with a greedy procedure, and only ensure optimality—on the
training set—at each node separately. The procedure is sketched in Algorithm 2, and is invoked with the
call

trainTree(T, 0) .

1For notational convenience, we make no distinction between training and test data here. For a test datum (x, y), the label y is
unknown.

2The tree is binary, the classifier is not necessarily: A binary classification tree can handle more than two classes.
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Algorithm 1 Classification with a tree
function y ← treeClassify(x, τ )

if leaf?(τ) then
return arg maxy τ.p

else
return treeClassify(x, split(x, τ))

end if
end function

function τ ← split(x, τ )
if xτ.d ≤ τ.t then

return τ.L
else

return τ.R
end if

end function

The algorithm first determines whether the set S it is given as input is worth splitting.3 If so, it finds optimal
parameters d and t that split S into sets L and R (equation (1)), stores those parameters at the root of a new
tree τ , stores as the root’s children τ.L and τ.R the result of calling itself on sets L and R, and returns τ .

If on the other hand S is not worth splitting, then the new tree τ is a single leaf node that contains an
estimate of the posterior distribution of labels in S.

This procedure leads to large trees that overfit and therefore generalize poorly, so a second step of
training prunes the tree to improve the generalization error. However, random forest classifiers address
generalization in a different way, by combining the predictions made by several trees. Because of this,
pruning is not performed in random forest classifiers, and is not discussed here. Instead, we now show
how to split a set (findSplit), how to decide whether to continue splitting (split?), and how to estimate the
distribution of labels in a set (distribution).

Splitting. The optimal single split of training data in set S into two sets L and R maximizes the decrease
in the training error

∆i(S,L,R) = i(S)− |L|
|S|

i(L)− |R|
|S|

i(R) (2)

where
i(S) = err(S)

is also called the impurity of S. In this expression, err(S) is the error accrued for the elements in S if this set
were no longer split, and is therefore the fraction of labels in S that are different from the label that occurs
most frequently in S, since all these labels would be misclassified:

err(S) = 1−max
y
p(y|S) where p(·|S) = distribution(S)

is the empirical distribution of the labels in the set S.
3Read on to find out when a set is worth splitting, how the optimal split parameters are found, and how the posterior distribution

is estimated.
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Algorithm 2 Training a classification tree
function τ ← trainTree(S,depth)

if split?(S,depth) then
[L,R, τ.d, τ.t]← findSplit(S)
τ.L← trainTree(L,depth + 1)
τ.R← trainTree(R,depth + 1)

else
τ.p← distribution(S)

end if
return τ

end function

function [L,R, d, t]← findSplit(S)
iS ← i(S) . i(S) is the impurity of S. See text.
∆opt ← −1 . At the end, ∆opt will be the greatest decrease in impurity.
for d = 1, . . . , D do . Loop on all data dimensions.

for ` = 1, . . . , ud do . Loop on all thresholds for dimension d.
L← {(x, y) ∈ S |xd ≤ t

(`)
d } . The thresholds t(`)d for d = 1, . . . , N and ` = 1, . . . , ud

R← S \ L . are assumed to have been precomputed (see text).
∆← iS − |L||S| i(L)− |R||S| i(R) . See text for a faster way to compute ∆
if ∆ > ∆opt then

[∆opt, Lopt, Ropt, dopt, topt]← [∆, L,R, d, t]
end if

end for
end for
return [Lopt, Ropt, dopt, topt]

end function

function answer← split?(S, depth)
return i(S) > 0 and |S| > smin and depth < dmax . smin and dmax are predefined thresholds

end function

function p← distribution(S)
p← [0, . . . , 0] . A vector of K zeros
n← 0
for (x, y) ∈ S do

p(y)← p(y) + 1
n← n+ 1

end for
return p/n

end function
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The so-called Gini index
i(S) = 1−

∑
y∈Y

p2(y|S)

is often used instead of the training error err(S), where

p(y|S) =
1

|S|
∑

(xi,yi)∈S

I(yi = y)

is the fraction of training labels in set S that are equal to y. The Gini index minimizes the training error for
a decision rule different from the MAP estimate, namely the stochastic rule

y = fGini(x) = y with probability p(y|Σ)

where Σ is the region of feature space that feature x falls into. When this classifier returns class y as the
answer, it contributes to the training error with probability 1−p(y|S), because that is the fraction of samples
in S that are not in class y. So the training error for the Gini classifier is the sum of these error probabilities,
weighted by the probability that the classifier returns y:

errGini(S) =
∑
y∈Y

p(y|S)(1− p(y|S)) = 1−
∑
y∈Y

p2(y|S) = i(S) .

Both the Gini index and the training error are empirical measures of the impurity of the distribution of
the training data in set S, in the sense that when and only when all training data in S have the same label (S
is “pure”) one obtains

err(S) = errGini(S) = 0 ,

and the two measures are otherwise positive. Empirical evidence shows that the choice of impurity measure
depends on the application domain.

With either measure of impurity, the best split is found in practice by cycling over all values of the
component index d ∈ 1, . . . , D and all possible choices of threshold t in equation (1). The number of
thresholds to be tried is finite because the number of training samples and therefore values of xd is finite as
well: If xd and x′d are consecutive values for the d-th component of x among all the samples in T , there is
no need to evaluate thresholds that are between xd and x′d. As a refinement, one can build a sorted list

x
(0)
d , . . . , x

(ud)
d

of the ud unique values of xd in T and set the thresholds to be tested as

t = t
(1)
d , . . . , t

(ud)
d where t

(`)
d =

x
(`−1)
d + x

(`)
d

2
for ` = 1, . . . , ud

to maximize the classification margin.
The function findSplit in Algorithm 2 summarizes the computation of the optimal split. Efficiency can

be improved by sorting the values of xd and updating |L|, |R|, i(R), i(L) and ∆ while traversing the list
from left to right, rather than computing ∆ from scratch at every iteration.
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Stopping Criterion. It is dangerous to stop splits when the change in training error falls below some
threshold, because a split that seems useless now might lead to good splits later on. Consider for instance
the feature space

X = {x ∈ R2 | − 1 ≤ x1 ≤ 1 and − 1 ≤ x2 ≤ 1}

with K = 2 classes and true labels

y = c1 for x1x2 > 0 and y = c2 for x1x2 < 0 .

Splitting on either x1 or x2 once does not change the misclassification rate, but splitting twice leads to a
good classifier. In other words, neither feature is predictive by itself, but the two of them together are.

Instead, one typically stops when the impurity of a set is zero, or when splitting a set would result in too
few samples in the resulting subsets, or when the tree has reached a maximum depth. See Algorithm 2.

Label Distribution. The training algorithm places an estimate of the posterior distribution of labels given
the feature at each leaf of the classification tree. This estimate is simply the empirical estimate from the
training set. Specifically, if the leaf set S contains Ny samples with label y, the distribution is

p(y|S) =
Ny

|S|
.

2 Random Forest Classifiers

Classification trees can represent arbitrarily complex probability spaces P and therefore hypothesis spaces
H. For instance, one can subdivide the unit interval [0, 1] on the real line into segments of length εwith a tree
that splits each parent segment in half. In multiple dimensions, to subdivide [0, 1]D into small hypercubes of
side ε, build a tree that interleaves D interval-splitting trees. One can then assign separate label distributions
to each hypercube, thereby approximating any desired distribution function to any degree.

Because of their expressiveness, classification trees must be curbed lest they overfit. The complexity of
individual classification trees is typically controlled by pruning them after expansion [6]. Empirical evidence
shows that a better alternative is to use random forest classifiers, which combine the predictions of several
trees.

A random forest classifier [5] is a classifier that consists of a collection of classifier trees fm(x) for
m = 1, . . . ,M that depend on independent identically distributed sets of parameters and each tree casts a
unit vote for the label of input x.

Several ways have been proposed and compared to each other [2, 7] to randomize the trees. These
include the following:

Bagging, that is, training each tree on a random subset of training samples drawn independently and uni-
formly at random from T with replacement [4].

Boosting, in which the random subsets of samples are drawn in sequence, each subset is drawn from a
distribution that favors samples on which previous classifiers in the sequence failed, and classifiers
are given a vote weight proportional to their performance [8].

Arcing, similar to boosting but without the final weighting of votes [3].

A particularly successful form of randomization combines bagging with random feature selection for
each node of every tree in the forest [1, 5]. In Breiman’s words,
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i Its accuracy is as good as Adaboost and sometimes better.

ii It’s relatively robust to outliers and noise.

iii It’s faster than bagging or boosting.

iv It gives useful internal estimates of error, strength, correlation and variable importance.

v It’s simple and easily parallelized.

Algorithm 3 summarizes how to train a random forest classifier and use it for classification. Using
Breiman’s training method, the function findSplit is modified to pick the feature component index d on
which to split at random rather than by maximizing the decrease (2) in the training error. A version of the
algorithm in which several features were split upon at each node was found to be only marginally better.
Either way, randomness is preferred over optimality in the splitting rule, since randomness increases the
diversity of the trees in the forest and decreases the generalization error as a consequence. Typical values of
M , the number of trees, are in the tens or hundreds. The size |S| of each subset S is equal to the size N of
the entire training set.

2.1 Out-of-Bag Estimate of the Generalization Error

Interestingly, bagging enables a way to estimate the generalization error of the random forest classifier as
follows.

When drawing a set S of N samples uniformly at random and with replacement out of the training set
T , about 37% of the samples are left out of S (and an equal fraction of samples are repetitions). To see this,
consider the experiment of drawing a single element out of T . The probability that any one element is drawn
is 1/N , so the probability that it is not drawn is 1 − 1/N , and the probability that that same element is not
drawn in any of the N draws is (

1− 1

N

)N
.

Since all elements in T are treated the same, this expression is also the expected fraction of elements that do
not end up in S. Since

lim
N→∞

(
1− 1

N

)N
=

1

e
≈ 0.37 ,

for large enough N about 37% of the elements of T are not in S. This approximation is good rather soon.
For instance, (1− 1/24)24 ≈ 0.36.

Let now T1, . . . , TM be the M input sets used for the M classifiers f1, . . . , fM in a random forest. An
out-of-bag classifier foob that works only on training data can be constructed by letting classifier fm vote
for a training sample if and only if the sample is not in Tm:

v(y) =
∣∣{m | (x, y′) /∈ Tm and fm(x) = y}

∣∣
and then taking the majority vote arg maxy v(y) as usual. The out-of-bag error is then the training error of
foob,

1

N

N∑
n=1

I(yn 6= foob(xn)) ,

which can be shown to be an unbiased estimate of the random forest’s generalization error [5].
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Algorithm 3 Training a random forest and using it for classification
function φ← trainForest(T,M ) . M is the desired number of trees

φ =← ∅ . The initial forest has no trees
for m = 1, . . . ,M do

S ← set of |T | samples drawn uniformly at random out of T with replacement
φ← φ ∪ {trainTree(S, 0)}

end for
end function

function τ ← trainTree(S,depth)
. This function is the same as in Algorithm 2, except that it calls findSplitR instead of findSplit

end function

function [L,R, d, t]← findSplitR(S)
. This function replaces findSplit in trainTree when training a random forest

iS ← i(S) . i(S) is the impurity of S. See text.
∆opt ← −1 . At the end, ∆opt will be the greatest decrease in impurity.
d← integer drawn uniformly at random out of {1, . . . , D}
for ` = 1, . . . , ud do . Loop on all thresholds for dimension d.

L← {x |xd ≤ t
(`)
d } . The splitting thresholds t(`)d for d = 1, . . . , N and ` = 1, . . . , ud

R← S \ L . are assumed to have been precomputed (see text).
∆← iS − |L||S| i(L)− |R||S| i(R) . See text for a faster way to compute ∆
if ∆ > ∆opt then

[∆opt, Lopt, Ropt, dopt, topt]← [∆, L,R, d, t]
end if

end for
return [Lopt, Ropt, dopt, topt]

end function

function y ← forestClassify(x, φ)
v← [0, . . . , 0] . A vector of K votes, one per label value, initially all zero
for τ ∈ φ do

y ← treeClassify(x, τ)
v(y)← v(y) + 1

end for
return arg maxy v(y)

end function
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